Problems:

1. Consider the following vector fields on \(\mathbb{R}^3 \):

\[
X(x) = \frac{\partial}{\partial x_2} - x_1 \frac{\partial}{\partial x_3}, \quad Y(x) = \frac{\partial}{\partial x_1}.
\]

Let \(x_0 = (0, 0, 0) \). Show that \(\phi^{-Y}_{h} \circ \phi^{-X}_{h} \circ \phi^{X}_{h}(x_0) = h^2 \phi^{[X,Y]}(x_0) \).

2. Show that if \(\Delta \) is a distribution of the form

\[
\Delta = \text{span}\{X_1, \ldots, X_d\}
\]

and we have \([X_i, X_j] \in \Delta \) for all \(i, j \) then for any \(X, Y \in \Delta, [X, Y] \in \Delta \). That is, to check involutivity of a distribution, we need only check that the pairwise brackets between basis elements lie in the distribution.

3. [Boothby, page 164, #4] Let \(N \subset M \) be a submanifold and let \(X, Y \in \mathcal{X}(M) \) be vector fields such that \(X_p, Y_p \in T_pN \) for \(p \in N \). Show that \([X,Y]_p \in T_pN \) for all \(p \in N \).

4. [Boothby, page 164, #5] Let \(F : M \to N \) be a smooth submersion of \(M \) onto \(N \). Show that \(F^{-1}(q) \) for all \(q \in N \) are the leaves of a foliation on \(M \).

5. Consider the motion of a disk rolling on the plane, as shown below:

We can represent the configuration of the disk by the \(xy \) location of the disk and the angle of the disk with respect to a fixed line on the plane. We ignore the angle through which the disk rolls. We model the motion of the disk using a one vector field to represent the drive input (rolling) and another vector field to represent the steer input (twisting).

Let \(M = \mathbb{R}^2 \times S^1 \) and let \(p = (x, y, \theta) \) represent a point on \(M \). Consider the two vector fields

\[
X(p) = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \quad Y(p) = \frac{\partial}{\partial \theta}
\]

(\(X \) is the drive vector field and \(Y \) is the steer vector field.)

(a) Compute the flows of \(X \) and \(Y \). Are they complete?
(b) Verify that X and Y are invariant under their own flows.

(c) Compute the Lie bracket between X and Y. Show that the tangent vectors X_p, Y_p, and $[X,Y]_p$ span T_pM for all $p \in M$.

(d) Consider the change of coordinates $z = \phi(x)$ given by

$$
\begin{bmatrix}
 z_1 \\
 z_2 \\
 z_3
\end{bmatrix} =
\begin{bmatrix}
 x \cos \theta + y \sin \theta \\
 x \sin \theta - y \cos \theta \\
 \theta
\end{bmatrix},
$$

(The new coordinates have the physical interpretation of being the origin of the spatial reference frame when viewed from a coordinate frame attached to the disk). Using the pushforward map for $\phi : \mathbb{R}^3 \to \mathbb{R}^3$, compute the X and Y vector fields in this new set of coordinates. (Hint: the final answer has a pretty simple form.)

(e) Show that $\phi_*[X,Y] = [\phi_* X, \phi_* Y]$ by explicit calculation.

(f) Show that X and Y are invariant under the group of rigid motions on \mathbb{R}^2, given by mappings

$$
F(x, y, \theta) =
\begin{bmatrix}
 x \cos \alpha - y \sin \alpha + \beta \\
 x \sin \alpha + y \cos \alpha + \gamma \\
 \theta + \alpha
\end{bmatrix},
$$

where $\alpha, \beta, \gamma \in \mathbb{R}$ are arbitrary constants.