CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

ACM/CDS 202

Problem Set #4

Issued: 30 Apr 2013 Due: 8 May

R. Murray Spring 2013

Reading: Abraham, Marsden, and Ratiu (MTA), sections 3.3, 4.1, 4.2

Problems:

- 1. If $F(x_1, x_2, x_3) = 0$ is a submersion defining a 2-dimensional manifold in \mathbb{R}^3 , under what conditions is $X = v_1 \frac{\partial}{\partial x_1} + v_2 \frac{\partial}{\partial x_2} + v_3 \frac{\partial x}{\partial x_3}$ (evaluated at a point where $F(x_1, x_2, x_3) = 0$) a tangent vector to M?
- 2. MTA 4.1-5: convolution equation
- 3. [Boothby, page 126, #6] Show that $\phi_t(x, y)$ defined by

$$\phi_t(x,y) = (xe^{2t}, ye^{-3t})$$

defines a C^{∞} flow on $M = \mathbb{R}^2$. Determine the vector field that generates this flow (called the *infinites-imal generator of the flow*) and show that it is ϕ invariant.

4. Let SO(3) be the set of 3×3 orthogonal matrices with determinant +1. The tangent space of SO(3) at the identity is given by the set of skew-symmetric matrices of the form

$$\widehat{\omega} = (\omega)^{\wedge} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

(we'll show this later in the course).

- (a) Show that if $v \in \mathbb{R}^3$, $\widehat{\omega}v = \omega \times v$, where \times is the cross product in \mathbb{R}^3 .
- (b) Show that the tangent space $T_R SO(3)$ consists of matrices of the form $\widehat{\omega}R$ where $\widehat{\omega}$ is skew-symmetric.
- (c) Show that the flow of a vector field $g(R) = \hat{\omega}R$ is given by $\phi_t(R) = \exp(\hat{\omega}t)R$ where exp is the matrix exponential.
- 5. In this problem we will explore the properties of the *Lie bracket* between two vector fields, [X, Y] = XY YX.
 - (a) Let X, Y be two smooth vector fields on M. Show that $XY : C^{\infty}(M) \to C^{\infty}(M)$ is not a vector field but that XY YX is.
 - (b) Let $X, Y \in \mathcal{X}(\mathcal{M})$ and $f, g \in C^{\infty}(\mathcal{M})$. Prove that

$$[fX,gY] = fg[X,Y] + f(Xg)Y - g(Yf)X.$$