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Chapter 1

Signals and Systems

The study of linear systems builds on the concept of linear maps over vector spaces, with inputs
and outputs represented as function of time and linear systems represented as a linear map over
functions. In this chapter we review the basic concepts of linear operators over (infinite-dimensional)
vector spaces, define the notation of a linear system, and define metrics on signal spaces that can
be used to determine norms for a linear system. We assume a basic background in linear algebra.

1.1 Linear Spaces and Mappings

We briefly review here the basic definitions for linear spaces, being careful to take a general view
that will allow the underlying space to be a signal space (as opposed to a finite dimensional linear
space).

Definition 1.1. A set V is a linear space over R if the following axioms hold:

1. Addition: For every x, y 2 V there is a unique element x+y 2 V where the addition operator
+ satisfies:

(a) Commutativity: x+ y = y + x.

(b) Associativity: (x+ y) + z = x+ (y + z).

(c) Additive identity element: there exists an element 0 2 V such that x + 0 = x for all
x 2 V .

(d) Additive inverse: For every x 2 V there exists a unique element �x 2 V such that
x+ (�x) = 0.

2. Scalar multiplication: For every ↵ 2 R and x 2 V there exists a unique vector ↵x 2 V and
the scaling operator satisfies:

(a) Associativity: (↵�) = ↵(�x).

(b) Distributivity over addition in V : ↵(x+ y) = ↵x+ ↵y.

(c) Distributivity over addition in R: (↵+ �)x = ↵x+ �x.

(d) Multiplicative identity: 1 ·x = x for all x 2 V .

5



More generally, we can replace R with any field (such as complex number C). The terms “vector
space”, “linear space”, and “linear vector space” will be used interchangeably throughout the text.

A vector space V is said to have a basis B = {v1, v2, . . . , vn} is any element v 2 V can be written
as a linear combination of the basis vectors vi and the elements of B are linearly independent. If
such a basis exists for a finite n, then V is said to be finite-dimensional of dimension n. If no such
basis exists for any finite n then the vector space is said to be infinite-dimensional.

Example 1.1 (Rn). The finite-dimensional vector space V = Rn consisting of elements x =
(x1, . . . , xn) is a vector space over the reals, with the addition and scaling operations defined as

x+ y = (x1 + y1, . . . , xn + yn)

↵x = (↵x1, . . . ,↵n)

Example 1.2 (P[t0, t1]). The space of piecewise continuous mappings from a time interval [t0, t1] ⇢
R to R is defined as the set of functions F : [t0, t1] ! R that have a finite set of discontinuities on
every bounded subinterval.

As an exercise, the reader should verify that the axioms of a linear space are satisfied.
Extensions and special cases include:

1. Pn[t0, t1]: the space of piecewise continuous functions taking values in Rn.

2. Cn[t0, t1]: the space of continuous functions F : [t0, t1] ! Rn.

All of these vector spaces are infinite dimensional.

Example 1.3 (V1⇥V2). Given two linear spaces V1 and V2 of the same type, the Cartesian product
V1 ⇥ V2 is a linear space with addition and scaling defined component-wise. For example, Rn ⇥Rm

is the linear space Rm+n and the linear space C[t0, t1]⇥ C[t0, t1] is a linear space C2[t0, t1] with the
operations

(f, g)(t) = (f(t), g(t)), (S1.1)

(f1, g1) + (f2, g2) = (f1 + g1, f2 + g2), (S1.2)

↵(f, g) = (↵f,↵g). (S1.3)

Given a vector space V over the reals, we can define a norm on the vector space that associates
with each element x 2 V a real number kxk 2 R.

Definition 1.2. A mapping k · k : V ! R is a norm on V if it satisfies the following axioms:

1. kxk � 0 for all x 2 V .
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2. kxk = 0 if and only if x = 0.

3. k↵xk = |↵| kxk for all x 2 V and ↵ 2 R.

4. kx+ yk  kxk+ kyk for all x, y 2 V (called the triangle inequality).

These definitions are easy to verify for finite-dimensional vector spaces, but they hold even if a
vector space is infinite-dimensional.

The following table describes some standard norms for finite-dimensional and infinite dimen-
sional linear spaces.

Name V = Rn
V = {Z+ ! Rn} V = {(�1,1) ! R}

1-norm, k · k1
P

i |xi|
P

k kx[k]k
R1
�1 |u(⌧)|, d⌧

2-norm, k · k2
pP

i |xi|2
�P

k kx[k]k2
�1/2 ⇣R1

�1 |u(⌧)|2, d⌧
⌘1/2

p-norm, k · kp p
pP

i |xi|p
�P

k kx[k]k2
�1/p ⇣R1

�1 |u(⌧)|p, d⌧
⌘1/p

1-norm, k · k1 maxi |xi| maxk kx[k]k supt |u(t)|

(The function sup is the supremum, where supt u(t) is the smallest number ū such that u(t)  ū

for all t.)
A linear space equipped with a norm is called a normed linear space. A normed linear space

is said to be complete if every Cauchy sequence in V converges to a point in V . (A sequence
{xi} is a Cauchy sequence if for every ✏ > 0 there exists an integer N such that kxp � xqk < ✏

for all p, q > N .) Not every normed linear space is complete. For example, the normed linear
space C[0,1), consisting of continuous, real-valued functions is not complete since it is possible to
construct a sequence of continuous functions that converge to a discontinuous function (for example
a step function). The space P[0,1) consisting of piecewise continuous functions is complete. A
complete normed linear space is called a Banach space.

Let V and W be linear spaces over R (or any common field). A mapping A : V ! W is a linear
map if

A(↵1v1 + ↵2v2) = ↵Av1 + ↵2V2

for all ↵1,↵2 2 R and v1, v2 2 V . Examples include:

1. Matrix multiplication on Rn.

2. Integration operators on P[0, 1]: Av =
R 1
0 v(t) dt.

3. Convolution operators: let h 2 P[0,1) and define the linear operator Ch as

(Chv)(t) =

Z t

0
h(t� ⌧)v(⌧) d⌧

This last item provides a hint of how we will define a linear system.

Definition 1.3. An inner product on a linear space V is a mapping h · , · i : V ⇥ V ! R with the
following properties:

1. Bilinear: h↵1v1 + ↵2v2, wi = ↵1hv1, wi+ ↵2hv2, wi and the same for the second argument.
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2. Symmetric: hv, wi = hw, vi

3. Positive definite: hv, vi > 0 if v 6= 0.

A (complete) linear space with an inner product is called a Hilbert space. The inner produce
also defines a norm given by kvk = hv, vi. A property of the inner product is that |hu, vi| 
kuk2 · kvk2 (the Cauchy-Schwartz inequality), which we leave as an exercise (hint: rewrite u as
u = z + (hu, vi/kvk)v where z can be shown to be orthogonal to u).

Example 1.4 (2-norm). Let V = C(�1,1). Then k · k2 can be verified to be a norm by checking
each of the axioms:

1. kuk2 =
⇣R1

�1 |u(t)|2 dt
⌘1/2

> 0.

2. If u(t) = 0 for all t then kuk2 = 0 by definition. To see the converse, assume that kuk2 = 0.
Then by definition we must have

Z 1

�1
|u(t)|2 dt = 0

and therefore kuk2 = 0 on any subset of (�1,1). Since C(�1,1) consists of continuous
functions, it follows that u(t) = 0 at all points t (if not, then there would be a subset of
(�1,1) on which |u(t)| > 0 and the integral would not be zero.

3. k↵uk2 =
⇣R1

�1 |↵u(t)|2 dt
⌘1/2

= ↵kuk2.

4. To show the triangle inequality for the 2-norm, we make use of the Cauchy-Schwartz inequality
by defining the inner product between two elements of V as

hu, vi =
Z 1

�1
u(t)v(t) dt.

It can be shown that this satisfies the properties of an inner product. Using the fact that
kuk2 = hu, ui we can show that

ku+ vk22 =
Z 1

�1
|u(t)|2 + 2u(t)v(t) + |v(t)|2 dt

= kuk22 + 2hu(t), v(t)i dt+ kvk22
 kuk22 + 2|hu(t), v(t)i| dt+ kvk22
 kuk22 + 2kuk2 · kvk2 + kvk22 = (kuk2 + kvk2)2

1.2 Input/Output Dynamical Systems

We now proceed to define an input/output dynamical system, with an eventual focus on linear
input/output dynamical systems. It is useful to distinguish between three di↵erent conceptual
aspects of a “dynamical system:

• A physical system represents a physical (or biological or chemical) system that we are trying
to analyze or design. An example of a physical system would be a vectored thrust aircraft or
perhaps a laboratory experiment intended to test di↵erent control algorithms.
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• A system model is an idealized version of the physical system. There may be many di↵erent
system models for a given physical system, depending on what questions we are trying to
answer. A model for a vectored thrust aircraft might be a simplified, planar version of the
system (relevant for understanding basic tradeo↵s), a nonlinear model that takes into ac-
count actuation and sensing characteristics (relevant for designing controllers that would be
implemented on the physical system), or a complex model including bending modes, thermal
properties and other details (relevant for doing model-based assessment of complex specifica-
tions involving those attributes).

• A system representation is a mathematical description of the system using one or more math-
ematical frameworks (e.g., ODEs, PDEs, automata, etc).

In the material that follows, we will use the word “system” to refer to the system representation,
but keeping in mind that this is just a mathematical abstraction of a system model that is itself
an approximation of the actual physical system.

Definition 1.4. Let T be a subset of R (usually T = [0,1) or T = Z+). A dynamical system on
T is a representation consisting of a tuple D = (U ,⌃,Y, s, r) where

• the input space U is a set of functions mapping T to a set U representing the set of possible
inputs to the system (typically U = Pm[0,1));

• the state space ⌃ is a set representing the state of the system (usually Rn, but can also be
infinite dimensional, for example when time delays or partial di↵erential equations are used);

• the output space Y is set of functions mapping T to a set Y representing the set of measured
outputs of the system (typically Y = Pp[0,1));

• the state transition function s : T ⇥T ⇥⌃⇥U ! ⌃ is a function of the form s(t1, t0, x0, u( · ))
that returns the state x(t1) of the system at time t1 reached from state x0 at time t0 as a
result of applying an input u 2 U ;

• the readout function r : T ⇥ ⌃ ⇥ U ! Y is a function of the form r(t, x, u) that returns the
output y(t) 2 Y representing the value of the measured outputs of the system at time t 2 T
given that we are at state x 2 ⌃ and applying input u 2 U .

Furthermore, the following axioms must be satisfied:

(A1) State transition axiom: for any t0, t1 2 T and x0 2 ⌃ with t1 � t0, if u( · ), ũ( · ) 2 U and

u(t) = ũ(t) for all t 2 [t0, t1] \ T

then

s(t1, t0, x0, u( · )) = s(t1, t0, x0, ũ( · )).

(A2) Semi-group axiom: For all t0  t1  t2 2 T , all x0 2 ⌃, and all u( · ) 2 U

s(t2, t1, s(t1, t0, x0, u( · )), u( · ) = s(t2, t0, x0, u( · )).
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Figure S1.1: Illustration of the state transition axiom.

The definition of a dynamical system captures precisely the notion of a system that has an
internal “state” x 2 ⌃ and that this state summarizes all information about the system at a given
time. Axiom A1 states that inputs di↵er before reaching a state x0 and after reaching a state
x1 but are otherwise the same will generate the same trajectory in state space, as illustrated in
Figure S1.1. Axiom A2 has the interpretation that we can compute the state at time t2 by first
calculating the state at some intermediate time t1. In both cases, these are formal statements that
the state x(t) summarizes all e↵ects due to the input prior to time t.

Example 1.5 (Input/output di↵erential equation representation). A nonlinear input/output sys-
tem can be represented as the di↵erential equation

dx

dt
= f(x, u), y = h(x, u), (S1.4)

where x is a vector of state variables, u is a vector of control signals, and y is a vector of measure-
ments. The term dx/dt represents the derivative of the vector x with respect to time, and f and h

are (possibly nonlinear) mappings of their arguments to vectors of the appropriate dimension.
For mechanical systems, the state consists of the configuration variables q 2 Rn and time deriva-

tives of the configuration variables q̇ 2 Rn (representing the generalized velocity of the system), so
that x = (q, q̇) 2 R2n. Note that in the dynamical system formulation of mechanical systems we
model the dynamics as first-order di↵erential equations, rather than the more traditional second-
order form (e.g., Lagrange’s equations), but it can be shown that first order di↵erential equations
can capture the dynamics of higher-order di↵erential equations by appropriate definition of the
state and the maps f and h.

A model is called a linear state space model if the functions f and h are linear in x and u. A
linear state space model can thus be represented by

dx

dt
= A(t)x+B(t)u, y = C(t)x+D(t)u, (S1.5)

where x 2 Rn, u 2 Rm, y 2 Rp and A(t), B(t), C(t), and D(t) are constant matrices of appropriate
dimension. The matrix A is called the dynamics matrix , the matrix B is called the control matrix ,
the matrix C is called the sensor matrix , and the matrix D is called the direct term. Frequently
models will not have a direct term, indicating that the input signal u does not influence the output
directly.
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This definition of a dynamical system is not the most general one possible. In particular, we
note that our definition is restricted to model systems that are causal : the current state depends
only on the past inputs. Furthermore, we have ignored the important class of stochastic dynamical
systems, in which the inputs, outputs, and states are described by probability distributions rather
than deterministic values. Similarly, this class of systems does not capture other types of non-
deterministic systems where a single state may lead to more than one possible output, a situation
that is not uncommon in automata theory.

In addition to restricting ourselves to deterministic, causal dynamical systems, we will also often
be interested in the case where the system is time-invariant as well. To define time invariance we
define the shift operator T⌧ : U ! U as (T⌧u)(t) = u(t + ⌧). We further define the input/output
map ⇢ : T ⇥ T ⇥ ⌃ ⇥ U ! Y as

⇢(t, t0, x0, u( · )) = r(t, s(t, t0, x0, u( · )), u(t)),

which allows us to evaluate the output of the system at time t given the initial state x(t0) = x0

and the input applied to the system.

Definition 1.5. A dynamical systems is time invariant if

1. U is closed under translation:

u( · ) 2 U =) T⌧u( · ) 2 U .

2. The input/output map is shift invariant :

⇢(t1, t0, x0, u( · )) = ⇢(t1 + ⌧, t0 + ⌧, x0, T⌧u( · )).

It is straightforward to show that a linear state space model is time invariant if the matrices
A(t), B(t), C(t), and D(t) do not depend on time, leading to the representation

dx

dt
= Ax+Bu, y = Cx+Du. (S1.6)

For our purposes, we will use a slightly more general description of a linear dynamical system,
focusing on input/output properties.

Definition 1.6. An input/output dynamical system is a linear input/output dynamical system if

1. U , ⌃, and Y are linear spaces over R (or some other common field, such as C);

2. for fixed t, t0 2 T with t � t0, ⇢ : T ⇥ T ⇥ ⌃ ⇥ U ! Y is linear in ⌃ ⇥ U onto Y :

⇢(t, t0, x0, u( · )) = ⇢(t, t0, x0, 0) + ⇢(t, t0, 0, u( · ))
⇢(t, t0,↵x+ �x

0
, 0) = ↵⇢(t, t0, x, 0) + �⇢(t, t0, x

0
, 0)

⇢(t, t0, 0,↵u( · ) + �u
0( · )) = ↵⇢(t, t0, 0, u( · )) + �⇢(t, t0, 0, u

0( · )).

It follows from this definition that if D is a linear dynamical system representation then the
output response can be divided into an initial condition (zero-input) response and a force (zero-
initial state) response:

⇢(t, t0, x0, u( · )) = ⇢(t, t0, x0, 0)| {z }
zero-input response

+ ⇢(t, t0, 0, u( · ))| {z }
zero-state response

.

11



Furthermore, the principle of superposition holds for the zero-state response:

⇢(t, t0, x0,↵u( · ) + �u
0( · )) = ↵⇢(t, t0, x0, u( · )) + �⇢(t, t0, x0, u( · )).

These properties will be familiar to readers who have already encountered linear input/output
systems in signal processing or control theory, though we do note here the subtlety that these
definitions and properties hold in the time-varying case as well as for time-invariant systems.

For the remainder of the notes we will restrict ourselves to linear, time-invariant (LTI) represen-
tations. We will also generally concentrate on the zero-state response, corresponding to the (pure)
input/output response.

1.3 Linear Systems and Transfer Functions

Let G be a linear, time-invariant, causal, finite-dimensional system. A di↵erent way of defining G

is to define the zero-state response as a convolution equation:

y = G ⇤ u, y(t) =

Z 1

�1
G(t� ⌧)u(⌧) d⌧.

In this formulation, the function G : (�1,1) ! Rm is called the impulse response of the system
and can be regarding as the response of the system to a unit impulse �(t) (see FBS2e for the
definition of the impulse function). The term G(t� ⌧) then represents the response of the system
at time t to an input and time ⌧ and the convolution equation is constructed by considering the
input to be the convolution of the impulse function �( · ) with the input u( · ) and applying the
principle of superposition. We also note that if the system is causal then G(t) = 0 for all t < 0 (if
this is not the case, then y(t) and depending on u(⌧) for ⌧ < t).

An alternative to representation of the input/output response as a convolution integral is to
make use of the (one-sided) Laplace transform of the inputs, outputs, and impulse response. Letting
Ŷ (s) represent the Laplace transform of the signal y(t)w where s 2 C is the Laplace variable, we
have

Ŷ (s) =

Z 1

0
y(t)e�st

dt

=

Z 1

0

✓Z 1

0
G(t� ⌧)u(⌧) d⌧

◆
e
�st

dt

=

Z 1

0

Z 1

0

⇣
G(t� ⌧)u(⌧) e�s(t�⌧)

dt

⌘
d⌧

=

✓Z 1

0
G(t)e�st

dt

◆

| {z }
Ĝ(s)

✓Z 1

0
u(⌧)e�s⌧

d⌧

◆

| {z }
Û(s)

.

The Laplace transform of y(t) is thus given by the product of the Laplace transform of the impulse
response G(t) and the Laplace transform of the input u(t). The function Ĝ(s) is called the transfer
function between input u and output y and represents the zero-state, input/output response of the
system. Notationally, we will often write Ĝyu to represent the transfer function from u to y so that
we have

Ŷ (s) = Ĝyu(s)Û(s).
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For a system with m inputs and p outputs, a transfer function Ĝ(s) represents a mapping from
C to Rp⇥m. Similar to our definition of norms for signal spaces, we can define norms for Laplace
transforms. For the single-input, single-output (SISO) case we define

kĜk2 =
✓

1

2⇡

Z 1

�1
|Ĝ(j!)|2 d!

◆1/2

, kĜk1 = sup
!

|Ĝ(j!)|.

It is left as an exercise to show that these are actually norms that satisfy the properties in Defini-
tion 1.2. The 2-norm is a measure of the energy of the impulse response of the system by making
use of Parseval’s theorem:

kĜk2 =
Z 1

�1
|G(t)|2 dt.

The 1-norm can be though of in multiple ways: it is the peak value of the frequency response
of the system represented by Ĝ or, equivalently, the distance in the complex plane to the farthest
point on the Nyquist plot of Ĝ (see FBS2e for the definition of the Nyquist plot). It can be shown
that the 1-norm is submultiplicative:

kĜĤk1  kĜk1kĤk1.

For a linear, time-invariant (LTI) state space model of the form

dx

dt
= Ax+Bu, y = Cx+Du,

with x 2 Rn, u 2 R, and y 2 R, it can be shown that the transfer function has the form

Ĝ(s) = C(sI �A)�1
B +D =

n(s)

d(s)

where n(s) and d(s) are polynomials and d(s) has highest order n. The poles of G are the roots
of the denominator polynomial and the zeros of G are the roots of the numerator polynomial. We
say that a transfer function Ĝ is proper if Ĝ(j1) is finite (in which case deg d � degn), strictly
proper if Ĝ(j1) = 0 (deg d > degn), and biproper if Ĝ and Ĝ

�1 are both proper (deg d = degn).
The transfer function is said to be stable if it is analytic in the closed right half-plane (i.e., there
are no right half-plane poles).

The following result is sometimes useful in proofs and derivations.

Theorem 1.1. The 2-norm (respectively 1-norm) of a rational transfer function Ĝ is finite if and
only if Ĝ is strictly proper (respectively proper) and has no poles on the imaginary axis.

1.4 System Norms

Given a norm for input signals and a norm for output signals, we can define the induced norm for
an input/output system. Although this can be done for the general case of nonlinear input/output
systems, we restrict ourselves here to the case of a linear input/output system. We furthermore
assume that the input/output response is represented by the transfer function (hence we consider
only the zero-state response).
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Definition 1.7. The induced a to b norm for a linear system G is given by

kGkb,a = sup
kuka1

kykb where y = G ⇤ u.

The induced a-norm to b-norm for a system is also called the system gain.

Theorem 1.2. Assume that Ĝ is stable and strictly proper and that U ,Y = P(�1,1). Then the
following table summarizes the induced norms of G:

kuk2 kuk1
kyk2 kĜk1 1
kyk1 kĜk2 kGk1

Sketch of proofs.

2-norm to 2-norm. We first show that the 2-norm to 2-norm system gain is less than or equal to
kĜk1:

kyk22 = kŶ k22

=
1

2⇡

Z 1

�1
|Ĝ(j!)|2 · |Û(j!)|2 d!

 kĜk21 · 1

2⇡

Z 1

�1
|Û(j!)|2 d!

 kĜk21 · kÛk22 = kĜk21 · kuk22.

To establish equality it su�ces to show that we can find an input that achieves the bound.
Let !0 be a frequency such that kĜ(j!0)k = kĜk1 (this exists because Ĝ is stable and strictly

proper). Define a signal u✏ such that

|Û✏(j!)| =
(p

⇡/3 if !0 � ✏  !  !0 + ✏

0 otherwise

and hence ku✏k2 = 1. Then

kŶ✏k22 =
1

2⇡

Z !0+✏

!0�✏
|Ĝ(j!)|2

⇣
⇡

✏

⌘
d!

=
1

2⇡

Z !0+✏

!0�✏
|Ĝ(j!0)|2

⇣
⇡

✏

⌘
d! + �✏

= kĜk21ku✏k22 + �✏,

where �✏ represents the error that we obtain by evaluating Ĝ at s = j!0 instead of s = j! in the
integral. By definition �✏ ! 0 as ✏! 0 (since Ĝ is continuous) and hence

kŶ0k22 = kĜk21kÛ0k2

and so this input achieves the bound. (Note: to be more formal we need to rely on the fact that U
and Y are Banach spaces.
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1-norm to 2-norm. Consider the bounded input u(t) = 1. This gives a constant output y(t) =
G(0)u(t). Assuming that the system has non-zero gain at ! = 0 then kyk2 = 1. (If the gain is
zero at zero frequency, a similar argument is possible using a sinusoid u = sin(!t).)

2-norm to 1-norm. We make use of the following corollary of the Cauchy-Schwartz inequality:

✓Z t1

t0

u(t)v(t) dt

◆2


✓Z t1

t0

|u(t)|2 dt
◆✓Z t1

t0

|v(t)|2 dt
◆
.

The output satisfies

|y(t)|2 =
✓Z 1

�1
G(t� ⌧)u(⌧) d⌧

◆2


✓Z 1

�1
|G(t� ⌧)|2 d⌧

◆
·
✓Z 1

�1
|u(⌧)|2 d⌧

◆

= kGk22 kuk22 = kĜk22 kuk22.

Since this holds for all t, it follows that

kyk1  kĜk2kuk2.

To get equality, we can apply the signal u(t) = G(�t)/kGk2. We have the kuk2 = 1 and

|y(0)| =
Z 1

�1
G(�t)G(�t)/kGk2 dt = kGk2.

So kyk1 � |y(0)| = kĜk2kuk2. Combining the two inequalities we have that kyk1 = kĜk2kuk2.

1-norm to 1-norm. See DFT [4].

1.5 Exercises

1.1 (DFT 2.1) Suppose that u(t) is a continuous signal whose derivative u̇(t) is also continuous.
Which of the following quantities qualifies as a norm for u:

(a) supt |u̇(t)|

(b) |u(0)|+ supt |u̇(t)|

(c) max{supt |u(t)|, supt |u̇(t)|}

(d) supt |u(t)|+ supt |u̇(t)|

Make sure to give a thorough answer (not just yes or no).
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1.2 (DFT 2.2) Consider the Venn diagram in Figure 2.1 of DFT. Show that the functions u1 to
u9, defined below, are located in the diagram as shown in Figure 2.2. All the functions are zero for
t < 0xs.

u1(t) =

(
1/
p
t, if t  1

0, if t > 1

u2(t) =

(
1/t

1
4 , if t  1

0, if t > 1

u3(t) = 1

u4(t) = 1/(1 + t)

u5(t) = u2 + u4

u6(t) = 0

u7(t) = u2(t) + 1

1.3 (DFT 2.4) Let D be a pure time delay of ⌧ seconds with transfer function

bD(s) = e
�s⌧

.

A norm k · k on transfer functions is time-delay invariant if for every bounded transfer function bG
and every ⌧ > 0 we have

k bD bGk = k bGk

Determine if the 2-norm and 1-norm are time-delay invariant.

1.4 Consider a discrete time system having dynamics

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k],

where x[k] 2 Rn is the state of the system at time k 2 Z, u[k] 2 R is the (scalar) input for the
system, y[k] 2 R is the (scalar) output for the system and A, B, and C are constant matrices of the
appropriate size. We use the notation x[k] = x(kh) to represent the state of the system at discrete
time k where h 2 R is the sampling time (and similarly for u[k] and y[k]).

Let T = [0, h, . . . , Nh] represent a discrete time range, with N 2 Z.

(a) Considered as a dynamical system over T , what is the input space U , output space Y, and state
space ⌃ corresponding to the dynamics above? Show that each of these spaces is a linear space by
verifying the required properties (you may assume that Rp is a linear space for appropriate p).

(b) What is the state transition function s(t1, t0, x0, u( · ))? Show that this function satisfies the
state transition axiom and the semi-group axiom.

(c) What is the readout function r(t, x, u)? Show that the input/output system is a linear in-
put/output dynamical system over T .

(d) What is the zero-input response for the system? What is the zero-state response for the system?
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1.5 (DFT 2.5) Compute the 1-norm of the impulse response corresponding to the transfer function

1

⌧s+ 1
⌧ > 0.

1.6 (DFT 2.6) For Ĝ stable and strictly proper, show that kGk1 < 1 and find an inequality relating
kĜk1 and kGk1. (Remember that G represents the impulse response corresponding to the transfer
function Ĝ.)

1.7 (DFT 2.7) Derive the 1-norm to 1-norm system gain for a stable, proper plant bG. (Hint:
write bG = c+ bG1 where c is a constant and bG1 is strictly proper.)

1.8 (DFT 2.8) Let bG be the transfer function for a stable, proper plant (but not necessarily strictly
proper).

(a) Show that the 1-norm of the output y given an input u(t) = sin(!t) is | bG(jw)|.

(b) Show that the 2-norm to 2-norm system gain for bG is k bGk1 (just as in the strictly proper
case).

1.9 (DFT 2.10) Consider a system with transfer function

bG(s) =
s+ 2

4s+ 1

and input u and output y. Compute

kGk1 = sup
kuk1=1

kyk1

and find an input that achieves the supremum.

1.10 (DFT 2.12) For a linear system with input u and output y, prove that

sup
kuk1

kyk = sup
kuk=1

kyk

where k · k is any norm on signals.

1.11 Consider a second order mechanical system with transfer function

bG(s) =
1

s2 + 2!n⇣s+ !2
n

(!n is the natural frequency of the system and ⇣ is the damping ratio). Setting !n = 1, plot the
1-norm as a function of the damping ratio ⇣ > 0. (You may use a computer to to this, but if you
do then make sure to turn in a copy of your code with your solutions.)
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Chapter 2

Linear Input/Output Systems

2.1 Matrix Exponential

Let x(t) 2 Rn represent that state of a system whose dynamics satisfy the linear di↵erential equation

d

dt
x(t) = Ax(t), A 2 Rn⇥n

, t 2 [0,1).

The initial value problem is to find x(t) given x(0). The approach that we take is to show that there
is a unique solution of the form x(t) = e

At
x(0) and then determine the properties of the solution

(e.g., stability) as a function of the properties of the matrix A.

Definition 2.1. Let S 2 Rn⇥n be a square matrix. The matrix exponential of S is given by

e
S = I + S +

1

2
S
2 +

1

3!
S
2 + · · ·+ 1

k!
S
k + . . .

Proposition 2.1. The series
P1

k=0
1
k!S

k converges for all S 2 Rn⇥n.

Proof. Simple case: Suppose S has a basis of eigenvectors {v1, . . . , vn}. Then

e
S
vi = (I + S + · · ·+ 1

k!
S
k + . . . )vi

= (1 + �i + · · ·+ 1

k!
�
k
i + . . . )vi

= e
�ivi,

which implies that eSx is well defined and finite (since this is true for all basis elements.
General case: Let kSk = a. Then

k 1

k!
S
kk  1

k!
kSkk =

a
k

k!
.

Hence

keSk 
1X

k=1

a
k

k!
= e

a = e
kSk

and so e
S
x is well-defined and finite.
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Proposition 2.2. If P, T 2 Rn ! Rn and S = PTP
�1 then

e
S = e

PTP�1
= Pe

T
P

�1
.

Proof.

e
S =

X 1

k!
S
k =

X 1

k!
(PTP

�1)k

= . . .
1

k!
(PTP

�1) · (PTP
�1) · · · (PTP

�1) · · ·

=
X 1

k!
PT

k
P

�1) = P

⇣X T
k

k!

⌘
P

�1) = Pe
T
P

�1
.

Proposition 2.3. If S, T : Rn ! Rn commute (ST = TS) then e
S+T = e

S
e
T .

Proof. (basic idea) The first few terms of expansion for the matrix exponential are given by

(S + T )0 = I

(S + T )1 = S + T

(S + T )2 = (S + T )(S + T ) = S
2 + ST + TS + T

2

= S
2 + 2ST + T

2 only if ST = TS!

(S + T )0 = (S + T )(S + T )(S + T )

= S
3 + S

2
T + STS + ST

2 + TS
2 + TST + T

2
S + T

3

= S
3 + 3S2

T + 3ST 2 + T
2 only if ST = TS!.

The general form becomes

(S + T )k =
kX

i=1

✓
k

i

◆
S
i
T
k�i

| {z }
binomial theorem

=
kX

i=1

k!

i!(k � i)!
S
i
T
k�i

.

2.2 Convolution Equation

We now extend our results to include an input. Consider the non-autonomous di↵erential equation

ẋ = Ax+ b(t), x(0) = x0. (S2.1)

Theorem 2.4. If b(t) is a (piecewise) continuous signal, then there is a unique x(t) satisfying
equation (S2.1) given by

x(t) = e
At
x0 +

Z t

0
e
T (t�⌧)

b(⌧) d⌧.
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Proof. (existence only) Note that x(0) = x0 and

d

dt
x(t) = Ax(t) +

d

dt

✓
e
At
Z t

0
e
�A⌧

b(⌧) d⌧

◆

= Ax(t) = Ae
At

✓Z t

0
e
�A⌧

b(⌧) d⌧

◆
+ e

At
�
e
�At

b(t)
�

=


Ax(t) +A

Z t

0
e
A(t�⌧)

b(⌧) d⌧

�
+ b(t)

= Ax(t) + b(t).

Note that the form of the solution is a combination of the initial condition response (eAt
x0) and

the forced response (
R t
0 . . . ). Linearity in the initial condition and the input follows from linearity

of matrix multiplication and integration.
An alternative form of the solution can be obtained by defining the fundamental matrix �(t) =

e
At as the solution of the matrix di↵erential equation

�̇ = A�, �(0) = I.

Then the solution can be written as

x(t) = �(t)x0 +

Z t

0
�(t� ⌧)b(⌧) d⌧

| {z }
convolution of � and b(t)

.

� thus acts as a Green’s function.
A common situation is that b(t) = B · a sin(!t) where B 2 Rn is a vector and a sin(!t) is a

sinusoid with amplitude a and frequency !. In addition, we wish to consider a specific combination
of states y = Cx, where C : Rn ! R:

ẋ(t) = Ax+Bu(t) u(t) = a sin(!t)

y(t) = Cx x(0) = x0.
(S2.2)

Theorem 2.5. Let H(s) = C(sI � A)�1
B and define M = |H(i!)|, � = argH(i!). Then the

sinusoidal response for the system in equation (S2.2) is given by

y(t) = Ce
At
x(0) + aM sin(!t+ �).

A proof can be found in FBS or worked out by using sin(!t) = 1
2(e

i!t � e
�i!t). The function

H(i!) gives the frequency response for the linear system. The function H : C ! C is called the
transfer function for the system.

2.3 Linear System Subspaces

To study the properties of a linear dynamical system, we study the properties of the eigenvalues
and eigenvectors of the dynamics matrix A 2 Rn⇥n. We will make use of the Jordan canonical form

21



for a matrix. Recall that given any matrix A 2 Rn⇥n there exists a transformation T 2 Cn⇥n such
that

J = TA
�1

T =

2

64
J1 0

. . .

0 JN

3

75 , Jk =

2

66664

�k 1 0

. . .
. . .
. . . 1

0 �k

3

77775
2 Rmk⇥mk .

This is the complex version of the Jordan form. There is also a real version with T 2 Rn⇥n in
which case the Jordan blocks representing complex eigenvalues have the form

Jk =

2

6666666664

ak �bk

bk ak

0 1
1 0

0 0

0
. . .

. . . 0

0 0
. . .

0 1
1 0

0 0 0
ak �bk

bk ak

3

7777777775

In both the real and complex cases the transformation matrices T consist of a set of generalized
eigenvectors wk1 , . . . , wkmk

corresponding to the eigenvalue �k.

Returning now to the dynamics of a linear system, let A 2 Rn⇥n be a square matrix representing
the dynamics matrix with eigenvalues �j = aj + ibj and corresponding (generalized) eigenvectors
wj = uj + ivj (with vj = 0 if bj = 0). Let B be a basis of Rn given by

B = {u1, . . . , up,| {z }
real �j

up+1, vp+1, . . . , up+q, vp+q| {z }
complex �j

}. (S2.3)

Definition 2.2. Given A 2 Rn and basis vector B as in equation (S2.3), define

1. Stable subspace: Es = span{uj , vj : aj < 0};

2. Unstable subspace: Eu = span{uj , vj : aj > 0};

3. Center subspace: Ec = span{uj , vj : aj = 0}.

These three subspaces can be used to characterize the behavior an unforced linear system. Since
E

s \ E
u = {0}, Es \ E

c = {0}, and E
c \ E

u = {0}, it follows that any vector x can be written as
a unique decomposition

x = u+ v + w, u 2 E
s
, v 2 E

c
, w 2 E

u
,

and thus Rn = E
s � E

c � E
u where � is the direct sum of two linear subspaces, defined as

S1 �S2 = {u+ v : u 2 S1, v 2 S2}. If all eigenvalues of A have nonzero real part, so that Ec = {0}
then the linear system ẋ = Ax is said to be hyperbolic.

Definition 2.3. A subspace E ⇢ Rn is invariant with represent to the matrix A 2 Rn⇥n if AE ⇢ E

and is invariant with respect to the flow e
At : Rn ! Rn if eAt

E ⇢ E for all t.
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Proposition 2.6. Let E be the generalized eigenspace of A corresponding to an eigenvalue �. Then
AE ⇢ E.

Proof. Let {v1, . . . , vk} be a basis for the generalized eigenspace of A. Then for every v 2 E we
can write

v =
X

↵jvj =) Av =
X

↵jAvj

where ↵j is the eigenvalue for the generalized eigenspace. Since v1, . . . , vk space the generalized
eigenvectors, we know that (�I�A)kj vj = 0 for some minimal kj associated with vj . It follows that

(A� �I)vj 2 ker(A� �I)kj�1 ⇢ E

and hence Avj = w + ↵jvj where w 2 E, which implies that Avj 2 E.

Proposition 2.7. The subspaces E
s, Ec, and E

u are all invariant under A and e
At.

Proof. Invariance under A follows from Proposition 2.6. To show invariance of the flow note that

e
At = (I +At+

1

2
A

2
t
2 + . . . )

so
e
At
E ⇢ E �AE �A

2
E � · · · ⇢ E.

Theorem 2.8 (Stability of linear systems). The following statements are equivalent

1. E
s = Rn (i.e., all eigenvalues have negative real part);

2. For all x0 2 Rn, limt!1 e
At
x0 = 0 (trajectories converge to the origin);

3. There exist constants a, c,m,M > 0 such that

me
�atkx0k  keAt

x0k  Me
�ctkx0k

(exponential rate of convergence).

Proof. To show the equivalence of (1) and (2) we assume without loss of generality that the matrix
is transformed into (real) Jordan canonical form. It can be shown that each Jordan block Jk can
be decomposed into a diagonal matrix Sk = �kI and a nilpotent matrix Nk consisting of 1’s on the
superdiagonal. The properties of the decomposition Jk = Sk + Nk are that Sk and Nk commute
and N

mk
k = 0 (so that Nk is nilpotent). From these two properties we have that

e
Jkt = e

�kIte
Nkt = e

�kt(I +Nk +
1

2
N

2
t
2 + · · ·+ 1

(mk � 1)!
N

mk�1
t
mk�1).

A similar decomposition is possible for complex eigenvalues, with the diagonal elements of eSkt

taking the form

e
akt


cos(bkt) � sin(bkt)
sin(bkt) cos(bkt)

�
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and the matrix Nk being a block matrix with superdiagonal elements given by the 2 ⇥ 2 identity
matrix.

For the real blocks we have �k < 0 and for the complex blocks we have the ak < 0 and it follows
that eJt ! 0 as t ! 1 (making use of the fact that e�ttm ! 0 for any � > 0 and m � 0). It follows
that (1) and (2) are thus equivalent.

To show (3) we need two additional facts, which we state without proof.

Lemma 2.9. Let T 2 Rn⇥n be an invertible transformation and let y = Tx. Then there exists
constants m and M such that

mkxk  kyk  Mkxk.

Lemma 2.10. Let A 2 Rn⇥n and assume ↵ < |Re (�)| < � for all eigenvalues �. Then there exists
a set of coordinates y = Tx such that

↵kyk2  y
T (TAT�1)y  �kyk2.

Using these two lemmas we can account for the transformation in converting the system into
Jordan canonical form. The only remaining element to prove is that a function of the form h(t) =
e
�kttm < �e

�t for some � and � > 0. This follows from the fact that a function of the form e
�✏t

t
m
l

is continuous and zero at t = 0 and at t = 1 and thus e�✏t
t
m
l is bounded above and below. From

this we can show (with a bit more work) that for any Jordan block Jk there exists � > 0 and
�k < � < 0 such that me

�at
< keJktx0k < Me

�ct where a < �k < c < 0. The full result follows by
combining all of the various bounds.

A number of other stability results can be derived along the same lines as the arguments above.
For example, if Rn = E

u (all eigenvalues have positive real part) then all solutions to the initial
value problem diverge, exponentially fast. If Rn = E

u � E
s then we have a mixture of stable and

unstable spaces. Any initial condition with a component in E
u diverges, but if x0 2 E

s then the
solution converges to zero.

The unresolved case is when E
c 6= {0}. In this case, the solutions corresponding to this subspace

will have the form

(I +Nt+
1

2
N

2
t
2 + · · ·+ 1

k!
N

k
t
k

for real eigenvalues and

cos(bkt) � sin(bkt)
sin(bkt) cos(bkt)

�
(I +Nt+

1

2
N

2
t
2 + · · ·+ 1

k!
N

k
t
k

for complex eigenvalues. Convergence in this subspace depends on N . If N = 0 then the solutions
remain bounded but do not converge to the original (stable in the sense of Lyapunov). If N 6= 0
the solutions diverge, but closer than the exponential case. The case of a nonlinear system whose
linearization as a non-trivial center subspace leads to a center “manifold” for the nonlinear system
and stability depends on the nonlinear characteristics of the system.

2.4 Input/output stability

A system is called bounded input/bounded output (BIBO) stable if a bounded input gives a
bounded output for all initial states. A system is called input to state stable (ISS) if kx(t)k 
�(kx(0)k)+�(kuk) where � and � are monotonically increasing functions that vanish at the origin.
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2.5 Time-Varying Systems

Suppose that we have a time-varying (“non-autonomous”), nonhomogeneous linear system with
dynamics of the form

dx

dt
= A(t)x+ b(t),

y = C(t)x+ d(t),
x(0) = x0. (S2.4)

A matrix �(t, s) 2 Rn⇥n is called the fundamental matrix for ẋ = A(t)x if

1. d
dt�(t, s) = A(t)�(t, s) for all s;

2. �(s, s) = I;

3. det�(t, s) 6= for all s, t.

Proposition 2.11. If �(t, s) exists for ẋ = A(t)x then the solution to equation (S2.4) is given by

x(t) = �(t, 0)x0 +

Z t

0
�(t, ⌧)b(⌧) d⌧.

This solution generalizes the solution for linear time-invariant systems and we see that the
structure of the solution—an initial condition response combined with a convolution integral—is
preserved. If A(t) = A is a constant, then �(t, s) = e

A(t�s) and we recover our previous solu-
tion. The matrix �(t, s) is also called the state transition matrix since x(t) = �(t, s)x(s) and
�(t, ⌧)�(⌧, s) = �(t, s) for all t > ⌧ > s. Solutions for �(t, s) exists for many di↵erent time-varying
systems, including periodic systems, systems that are su�ciently smooth and bounded, etc.

Example 2.1. Let

A(t) =


�1 e

at

0 �1

�
.

To find �(t, s) we have to solve the matrix di↵erential equation


�̇11 �̇12

�̇21 �̇22

�
=


�1 e

at

0�1

� 
�11 �12

�21 �22

�
,

with �(s, s) = I, which serves as an initial condition for the system. We can break the matrix
equation into its individual elements. Beginning with the equations for the bottom row of the
matrix, we have

�̇21 = ��21 =) �21(t, s) = e
�(t�s)�21(s, s) = 0,

�̇22 = ��22 =) �22(t, s) = e
�(t�s)�22(s, s) = e

�(t�s)
.

Now use �21 and �22 to solve for �11 and �12:

�̇11 = ��11 =) �11(t, s) = e
�(t�s)

�̇12 = ��12 + e
at
e
�(t�s) = ��12(t, s) = e

(a�1)t+s
.
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This last equation is of the form ẋ = �x+ b(t) and so we can solve it using the solution for a linear
di↵erential equation:

�12(t, s) = e
�(t�s)�12(s, s) +

Z t

s
e
�(t�⌧)

e
(a�1)⌧+s

d⌧

= e
�(t�s)

Z t

s
e
a⌧

d⌧ = e
�(t�s)

✓
1

a
e
a⌧

◆����
t

s

= e
�(t�s)

✓
1

a
e
at � 1

a
e
as

◆

=
1

a
e
at�(t�s) � 1

a
e
as�(t�s)

.

Combining all of the elements, the fundamental matrix is thus given by

�(t, s) =


e
�(t�s) 1

a

�
e
at�(t�s) � e

as�(t�s)
�

0 e
�(t�s)

�
.

The properties of the fundamental matrix can be verified by direct calculation (and are left to the
reader).

The solution for the unforced system (b(t) = 0) is given by

x(t) = �(t, 0)x(0) =


e
�t 1

a

�
e
(a�1)t � e

�t
�

0 e
�t

�
x(0).

We see that although the eigenvalues of A(t) are both �1, if a > 1 then some solutions of the
di↵erential equation diverge. This is an example that illustrates that for a linear system ẋ = A(t)x
stability requires more than Re (�A) < 0.

A common situation is one in which A(t) is period with period T :

dx

dt
= A(t)x(t), A(t+ T ) = A(t).

In this case, we can show that the fundamental matrix has the form

�(t+ T, s) = �(T, 0)�(t, s).

This property allows us to compute the fundamental matrix just over the period [0, T ] (e.g., numeri-
cally) and use this to determine the fundamental matrix at any future time. Additional explotation
of the structure of the problem is also possible, as the next theorem illustrates.

Theorem 2.12 (Floquet). Let A(t) be piecewise continuous and T -periodic. Define P (t) 2 Rn⇥n

as
P (t) = �(t, 0)e�Bt

, B = �(T, 0).

Then

1. P (t+ T ) = P (t);

2. P (0) = I and detP (t) 6= 0;
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3. �(t, s) = P (t)eB(t�s)
P

�1(s);

4. If we set z(t) = P
�1(t)x(t) then ż = Bz.

A consequence of this theorem is that in “rotating” ccoordinates z we can determine the stability
properties of the system by examination of the matrix B. In particular, if z(t) ! 0 then x(t) ! 0.
For a proof, see Callier and Desoer [3].

2.6 Exercises

2.1 (FBS2e 6.1) Show that if y(t) is the output of a linear time-invariant system corresponding
to input u(t), then the output corresponding to an input u̇(t) is given by ẏ(t). (Hint: Use the
definition of the derivative: ż(t) = lim✏!0

�
z(t+ ✏)� z(t)

�
/✏.)

2.2 (FBS2e 6.2) Show that a signal u(t) can be decomposed in terms of the impulse function �(t)
as

u(t) =

Z t

0
�(t� ⌧)u(⌧) d⌧

and use this decomposition plus the principle of superposition to show that the response of a
linear, time-invariant system to an input u(t) (assuming a zero initial condition) can be written as
a convolution equation

y(t) =

Z t

0
h(t� ⌧)u(⌧) d⌧,

where h(t) is the impulse response of the system. (Hint: Use the definition of the Riemann inte-
gral.)

2.3 (FBS2e 6.4) Assume that ⇣ < 1 and let !d = !0

p
1� ⇣2. Show that

exp


�⇣!0 !d

�!d �⇣!0

�
t = e

�⇣!0t


cos!dt sin!dt

� sin!dt cos!dt

�
.

Also show that

exp

✓
�!0 !0

0 �!0

�
t

◆
= e

�!0t


1 !0t

0 1

�
.

Use the results of this problem and the convolution equation to compute the unit step response �
for a spring mass system

mq̈ + cq̇ + kq = F

with initial condition x(0).

2.4 (FBS2e 6.6) Consider a linear system with a Jordan form that is non-diagonal.

(a) Prove Proposition 6.3 in Feedback Systems by showing that if the system contains a real eigen-
value � = 0 with a nontrivial Jordan block, then there exists an initial condition with a solution
that grows in time.
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(b) Extend this argument to the case of complex eigenvalues with Re � = 0 by using the block�
Jordan form

Ji =

2

664

0 ! 1 0
�! 0 0 1
0 0 0 !

0 0 �! 0

3

775 .

2.5 (FBS2e 6.8) Consider a linear discrete-time system of the form

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k] +Du[k].

(a) Show that the general form of the output of a discrete-time linear system is given by the
discrete-time convolution equation:

y[k] = CA
k
x[0] +

k�1X

j=0

CA
k�j�1

Bu[j] +Du[k].

(b) Show that a discrete-time linear system is asymptotically stable if and only if all the eigenvalues
of A have a magnitude strictly less than 1.

(c) Show that a discrete-time linear system is unstable if any of the eigenvalues of A have magnitude
greater than 1.

(d) Derive conditions for stability of a discrete-time linear system having one or more eigenvalues
with magnitude identically equal to 1. (Hint: use Jordan form.)

(e) Let u[k] = sin(!k) represent an oscillatory input with frequency ! < ⇡ (to avoid “aliasing”).
Show that the steady-state component of the response has gain M and phase ✓, where

Me
i✓ = C(ei!I �A)�1

B +D.

(f) Show that if we have a nonlinear discrete-time system

x[k + 1] = f(x[k], u[k]), x[k] 2 Rn
, u 2 R,

y[k] = h(x[k], u[k]), y 2 R,

then we can linearize the system around an equilibrium point (xe, ue) by defining the matrices A,
B, C, and D as in equation (6.35).

2.6 Using the computation for the matrix exponential, show that equation (6.11) in Feedback
Systems holds for the case of a 3 ⇥ 3 Jordan block. (Hint: Decompose the matrix into the form
S +N , where S is a diagonal matrix.)

2.7 Consider a stable linear time-invariant system. Assume that the system is initially at rest and
let the input be u = sin!t, where ! is much larger than the magnitudes of the eigenvalues of the
dynamics matrix. Show that the output is approximately given by

y(t) ⇡ |G(i!)| sin
�
!t+ argG(i!)

�
+

1

!
h(t),

where G(s) is the frequency response of the system and h(t) its impulse response.
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2.8 Consider the system

dx

dt
=


0 1
�1 0

�
x+


0
1

�
u, y =

⇥
1 0

⇤
x,

which is stable but not asymptotically stable. Show that if the system is driven by the bounded
input u = cos t then the output is unbounded.
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Chapter 3

Reachability and Stabilization

Preliminary reading The material in this chapter extends the material in Chapter 7 in FBS2e.
Readers should be familiar with the material in Sections 7.1 and 7.2 in preparation for the more
advanced concepts discussed here.

3.1 Concepts and Definitions

Consider an input/output dynamical system D = (U ,⌃,Y, s, r) as defined in Section 1.2.

Definition 3.1 (Reachability). A state xf is reachable from x0 in time T if there exists an input
u : [0, T ] ! Rm such that xf = s(T, t0, x0, u).

If xf is reachable from x0 in time T we will write

x0 
T

xf

or sometimes just x0  xf if there exists some T for which xf is reachable from x0 in time T . The
set of all states that are reachable from x0 in time less than or equal to T is written as

RT (x0) = {xf 2 ⌃ : x0 
⌧
xf for some ⌧  T}.

Definition 3.2 (Reachable sytem). An input/output dynamical system D is reachable if for every
x0, xf 2 ⌃ there exists T > 0 such that x0 

T
xf.

.
The notion of reachability captures the property that we can reach a any final point xf starting

from x0 with some choice of input u( · ). In many cases, it will be not be possible to reach all states
xf but it may be possible to reach an open neighborhood of such points.

Definition 3.3 (Small-time local controllability). A system is small-time locally controllable (STLC)
if for any T > 0 the set RT (x0) contains a neighborhood of x0.

The notions of reachability and (small-time local) controllability hold for arbitrary points in
the state space, but we are often most interested in equilibrium points and our ability to stabilize a
system via state feedback. To define this notion more precisely, we specialize to the case of a state
space control systems whose dynamics can be written in the form

dx

dt
= f(x, u), x(0) = x0. (S3.1)
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Definition 3.4 (Stabilizability). A control system with dynamics (S3.1) is stabilizable at an equi-
librium xe if there exists a control law u = ↵(x, xe) such that

dx

dt
= f(x,↵(x, xe)) =: F (x)

is locally asymptotically stable at xe.

The main distinction between reachability and stabilizability is that there may be regions of the
state space that are not reachable via application of appropriate control inputs but the dynamics
may be such that trajectories with initial conditions in those regions of the state space converge
to the origin under the natural dynamics of the system. We will explore this concept more fully in
the special case of linear time-invariant systems.

3.2 Reachability for Linear State Space Systems

Consider a linear, time-invariant system

dx

dt
= Ax+Bu, x(0) = x0, (S3.2)

with x 2 Rn and u 2 Rm, and having state transition function. In this case the state transition
function is given by the convolution equation,

x(t) = s(t, 0, x0, u( · )) = e
At
Bx0 +

Z t

0
e
A(t�⌧)

Bu(⌧) d⌧.

It can be shown that if a linear system is small-time locally controllable at the origin then it is
small-time locally controllable at any point xf , and furthermore that small-time local controllability
is equivalent to reachability between any two points (Exercise 3.9).

The problem of reachability for a linear time-invariant system is the same as the general case:
we wish to find an input u( · ) that can steer the system from an initial condition x0 to a final
condition xf in a given time T . Because the system is linear, without loss of generality we can
take x0 = 0 (if not, replace the final position xf with xf � e

AT
x0. In addition, since the state

space dynamics depend only on the matrices A and B, we will often state that the pair (A,B) is
reachable, stabilizable, etc.

The simplest (and most commonly) used test for reachability for a linear system is to check
that the reachability matrix is full rank:

rank
⇥
B AB · · · A

n�1
B
⇤
= n.

The rank test provides a simple method for checking for reachability, but has the disadvantage that
doesn’t provide any quantitative insight into how “hard” it might be to either reach a given state
or to assign the eigenvalues of the closed loop systems.

A better method of characterizing the reachability properties of a linear system is to make
use of the fact that the system defines a linear map between the input u( · ) 2 U and the state
x(T ) = xf 2 ⌃:

x(T ) = LT u( · ) =
Z T

0
e
A(T�⌧)

Bu(⌧) d⌧. (S3.3)
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Recall that for a linear operator in finite dimensional spaces L : Rm ! Rn with m > n that the
rank of the linear operator L is the same as the rank of the linear operator LL⇤ : Rn ! Rn where
L
⇤ : Rn ! Rm is the adjoint operator (given by L

T in the case of matrices). Furthermore, if L is
surjective (onto) then the least squares inverse of L is given by

L
+ = L

⇤(LL⇤)�1 and LL
+ = I 2 Rn⇥n

. �
More generally, the adjoint operator can be defined on a linear map between Banach spaces by

defining the dual of a Banach space V to be the space V
⇤ of continuous linear functionals on V .

Given a linear function ! 2 V
⇤ we write h!, vi := !(v) to represent the application of the function

! on the element v. In the case of finite dimensional vector spaces we can associate the set V ⇤ with
V and h�, vi is of the form w

T
v where w 2 Rn.

If we have a mapping between linear spaces V and W given by L : V ! W , the adjoint operator
L
⇤ : W ⇤ ! V

⇤ is defined as the unique operator that satisfies

hL⇤
�, vi = h�, Lvi for all v 2 V and � 2 W

⇤
.

Note that the application of the linear function on the left occurs in the space V and on the right
occurs in the space W .

For a signal space U , a linear functional has the form of an integral

h!( · ), u( · )i =
Z 1

0
!(⌧) ·u(⌧) d⌧

and so we can associate each linear function in U⇤ with a function !(t). Given a linear mapping
LT : U ! ⌃ of the form

LT (u( · )) =
Z T

0
h(T � ⌧)u(⌧) d⌧

it can be shown that the adjoint operator LT
⇤ : ⌃ ! U⇤ is given by

L⇤
T (t)w

⇤ =

(
hh(T � t), wi if t  T ,

0 otherwise

where w 2 ⌃.
To show that a system is reachable, we need to show that LT : U ! ⌃ given by equation S3.3

is full rank. Using the analysis above, the adjoint operator L⇤
T : ⌃ ! U⇤ is

(L⇤
T v)(t) = B

T
e
AT(T�t)

v.

As in the finite dimensional case, the dimension of the range of the map LT : U ! ⌃ is the same
as the dimension of the range of the map LTL⇤

T : ⌃ ! ⌃, which is given by

LTL⇤
T =

Z T

0
e
A(T�⌧)

BB
T
e
AT(T�⌧)

d⌧.

This analysis leads to the following result on reachability for a linear system. 4
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Theorem 3.1 (Gramian test). A pair (A,B) is reachable in time T if and only if

Wc(T ) =

Z T

0
e
A(T�⌧)

BB
T
e
AT(T�⌧)

d⌧ =

Z T

0
e
A⌧

BB
T
e
AT⌧

d⌧

is positive definite.

The matrix Wc(T ) provides a means to compute an input that steers a linear system from the
origin to a point xf 2 Rn. Given T > 0, define

u(t) = B
T
e
AT(T�t)

W
�1
c (T )xf.

It follows from the definition of Wc that x0 
T

xf . Furthermore, it is possible to show that if the

system is reachable for some T > 0 then it is reachable for all T > 0. Note that this computation
of u( · ) corresponds to the computation of the least squares inverse in the finite dimensional case
(u = L⇤

T (LTLT )�1
xf).

Lemma 3.2. If Wc(T ) is positive definite for some T > 0 then it is positive definite for all T > 0.

Proof. We prove the statement by contradiction. Suppose that Wc(T ) is positive definite for a
specific T > 0 but that there exists T

0
> 0 such that rank Wc(T 0) = k < n. Then there exists a

vector v 2 Rn such that vTWc(T 0) = 0 and furthermore

v
T
Wc(T

0)v = v
T

 Z T 0

0
e
A⌧

BB
T
e
AT⌧

v d⌧

!
= 0.

Since the integrand is a symmetric matrix, it follows that we must have

v
T
e
A⌧

BB
T
e
AT⌧

v = 0 for all ⌧  T
0
,

and hence
v
T
e
A⌧

B = 0 =) v
T
B = 0 (evaluating at t = 0)

d

d⌧
(vTeA⌧

B) = v
T
Ae

A⌧
B = 0 =) v

T
AB = 0

...

v
T
A

n�1
B = 0.

Therefore vTeA⌧
B = 0 for all ⌧ (including ⌧ > T

0) and hence vTWc(t) = 0 for all t > 0, contradicting
our original hypothesis.

If the eigenvalues of A all have negative real part, it can be shown that Wc(t) converges to a con-
stant matrix as t ! 1 and we write this matrix as Wc = Wc(1). This matrix is called the control-
lability Gramian. (Note that FBS2e uses Wr to represent the reachability matrix [B AB A

2
B . . . ].

This is di↵erent than the controllability Gramian.)

Theorem 3.3. AWc +WcA
T = �BB

T.
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Proof.

AWc +WcA
T =

Z 1

0
Ae

A⌧
BB

T
e
AT⌧

d⌧ +

Z 1

0
e
A⌧

BB
T
e
AT⌧

A
T
d⌧

=

Z 1

0

d

dt

⇣
e
A⌧

BB
T
e
AT⌧

A
T
⌘
d⌧

=
⇣
e
At
BB

T
e
ATt
⌘���

1

t=0

= 0�BB
T = �BB

T
.

Theorem 3.4. A linear time-invariant control system S3.2 is reachable if and only if Wc is full
rank and the subspace of points that are reachable from the origin is given by the image of Wc.

Proof. Left as an exercise. Use the fact that the range of Wc(T ) is independent of T .

Reachability is best captured by the Gramian since it relates directly to the map between an
input vector and final state, and its norm is related to the di�culty of moving from the origin to an
arbitrary state. Furthermore, the eigenvectors of Wc and the corresponding eigenvalues provide a
measure of how much control e↵ort is required to move in di↵erent directions. There are, however,
several other tests for reachability that can be used for linear systems.

Theorem 3.5. The following conditions are necessary and su�cient for reachability of a linear
time-invariant system:

• Reachability matrix test:
rank

⇥
B AB · · · A

n�1
B
⇤
= n.

• Popov-Belman-Hautus (PBH) test:

rank
⇥
sI �A B

⇤
= n

for all s 2 C (su�ces to check for eigenvalues of A).

Proof. (Incomplete) PBH necessity: Suppose

rank
⇥
�I �A B

⇤
< n.

Then there exists v 6= 0 such that

v
T
⇥
�I �A B

⇤
= 0

and hence xTA = �x
T and x

T
B = 0. It follows that xTA2 = �

2
x
T
, . . . , x

T
A

n�1 = �
n�1

x
T and thus

x
T
⇥
B AB · · · A

n�1
B
⇤
= 0.

For both of these tests, we note that if the corresponding matrix is rank deficient, the left null
space of that matrix gives directions in the state space that are unreachable (more accurately it
consists of the directions in which the projected value of the state is constant along all trajectories
of the system). The set of vectors orthogonal to this left null space defines a subspace V r that
represents the set of reachable states (exercise: prove this is a subspace).
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Theorem 3.6. Assume (A,B) is not reachable. Let rankWc = r < n. Then there exists a
transformation T 2 Rn⇥n such that

TAT
�1 =


A1 A2

0 A3

�
, TB =


B1

0

�
,

where A1 2 Rr⇥r, B1 2 Rr⇥m, and (A1, B1) is reachable.

Proof. (Sketch) Let V r represent the null space of Wc and let B r = {w1, . . . , wn�r} represent a basis
for V r. Complete this basis with a set of vectors {v1, . . . , vr} such that {v1, . . . , vr, w1, . . . , wn�r}
is a basis for Rn. Use these basis vectors as the columns of the transformation T .�

We note that the null space of Wc is uniquely defined, though the basis for that space is
not unique. This subspace represents the set of linear functions on the state space whose values
are constant and hence provides a characterization of the unreachable states of the system. The
complement of that space is not a subspace, although if we look at the points that are reachable
from the origin, this does form a subspace. We will return to this point in more detail when we
discuss the Kalman decomposition in Chapter 5.4

Finally, we note that a system that is reachable can be written in reachable canonical form (see
FBS2e). This is primarily useful for proofs.

3.3 System Norms

Consider a stable state space system with no direct term and with system matrices A, B, and C.
Let Wc be the controllability Gramian for the system and let G(t) represent the impulse response
function for the system and Ĝ(s) represent the corresponding transfer function (Laplace transform
of the impulse response). Recall that the 2-norm to 1-norm gain for a linear input/output system
is given by kĜk2.

Theorem 3.7. kĜk2 =
p
CWcC

T.

Proof. The impulse response function given by

G(t) = Cx�(t) = C

Z t

0
A

A(t�⌧)
B�(⌧) d⌧

= Ce
At
B, t > 0.

The system norm is given by

kĜk22 = kGk22

=

Z 1

0

�
Ce

A⌧
B
��
B

T
e
AT⌧

C
T
�
d⌧

= C

✓Z 1

0
e
At
BB

T
e
AT⌧

d⌧

◆
C

T

= CWcC
T
.
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The more common norm in control system design is the 2-norm to 2-norm system gain, which
is given by kĜk1. To compute the 1-norm of a transfer function, we define

H� =


A

1
�BB

T

�C
T
C �A

T

�
2 R2n⇥2n

.

The system gain can be determined in terms of H� as follows.

Theorem 3.8. kĜk1 < � is an only if H� has no eigenvalues on the j! axis.

Proof. DGKF.

To numerically compute the H1 norm, we can use the bisection method to determine � to
arbitrary accuracy.

3.4 Stabilization via Linear Feedback

We now consider the problem of stabilization, as defined in Definition 3.4. For a linear system, we
will consider feedback laws of the form u = �Kx (the negative sign is a convention associated with
the use of “negative” feedback), so that

dx

dt
= Ax+Bu = (A�BK)x.

One of the goals of introducing negative feedback is to stabilize an otherwise unstable system at the
origin. In addition, state feedback can be used to “design the dynamics” of the close loop system
by attempting to assign the eigenvalues of the closed loop system to specific values.

Theorem 7.3 states that if a (single-input) system is reachable then it is possible to assign
the eigenvalues of the closed loop system to arbitrary values. This turns out to be true for the
multi-input case as well and is proved in a similar manner (by using an appropriate normal form).

Using the decomposition theorem 3.6 it is easy to see that the question of stabilizability for
a linear system comes down to the question of whether the dynamics in the unreachable space
(ż = A3z) are stable, since these eigenvalues cannot be changed through the use of state feedback.

Although eigenvalue placement provides an easy method for designing the dynamics of the
closed loop system, it is rarely used directly since it does not provide any guidelines for trading o↵
the size of the inputs required to stabilize the dynamics versus the properties of the closed loop
response. This is explored in a bit more detail in FBS2e Section 14.6 (Robust Pole Placement).

3.5 Exercises

3.1 (Sontag 3.1.2/3.1.3) Prove the following statements:

(a) If (x,�) (z, ⌧) and (z, ⌧) (y, µ), then (x,�) (y, µ).

(b) If (x,�)  (y, µ) and if � < ⌧ < µ, then there exists a z 2 X such that (x,�)  (z, ⌧) and
(z, ⌧) (y, µ).

(c) If x  
T

y for some T > 0 and if 0 < t < T , then there is some z 2 X such that x  
t

z and
z  

T�t
y.
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(d) If x 
t
z, z  

s
y, and ⌃ is time-invariant, then x  

t+s
y.

(e) If x z, z  y, and ⌃ is time-invariant, then x y.

(f) Given examples that show that properties (d) and (e) may be false if ⌃ is not time-invariant.

(g) Even for time-invariant systems, it is not necessarily true that x  z implies that z  x (so,
“ ” is not an equivalence relation).

3.2 (FBS2e 7.1) Consider the double integrator. Find a piecewise constant control strategy that
drives the system from the origin to the state x = (1, 1).

3.3 (FBS2e 7.2) Extend the argument in Section 7.1 in Feedback Systems to show that if a system
is reachable from an initial state of zero, it is reachable from a nonzero initial state.

3.4 (FBS2e 7.3) Consider a system with the state x and z described by the equations

dx

dt
= Ax+Bu,

dz

dt
= Az +Bu.

If x(0) = z(0) it follows that x(t) = z(t) for all t regardless of the input that is applied. Show that
this violates the definition of reachability and further show that the reachability matrix Wr is not
full rank. What is the rank of the reachability matrix?

3.5 (FBS2e 7.6) Show that the characteristic polynomial for a system in reachable canonical form
is given by equation (7.7) and that

d
n
zk

dtn
+ a1

d
n�1

zk

dtn�1
+ · · ·+ an�1

dzk

dt
+ anzk =

d
n�k

u

dtn�k
,

where zk is the kth state.

3.6 (FBS2e 7.7) Consider a system in reachable canonical form. Show that the inverse of the
reachability matrix is given by

W̃
�1
r =

2

6666664

1 a1

1
a2 · · · an�1

a1 · · · an�2

0

1
. . .

...
. . . a1

1

3

7777775
.

3.7 (FBS2e 7.10) Consider the system

dx

dt
=


0 1
0 0

�
x+


1
0

�
u, y =

⇥
1 0

⇤
x,

with the control law
u = �k1x1 � k2x2 + kfr.

Compute the rank of the reachability matrix for the system and show that eigenvalues of the system
cannot be assigned to arbitrary values.
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3.8 (FBS2e 7.11) Let A 2 Rn⇥n be a matrix with characteristic polynomial �(s) = det(sI � A) =
s
n + a1s

n�1 + · · ·+ an�1s+ an. Show that the matrix A satisfies

�(A) = A
n + a1A

n�1 + · · ·+ an�1A+ anI = 0,

where the zero on the right hand side represents a matrix of elements with all zeros. Use this
result to show that A

n can be written in terms of lower order powers of A and hence any matrix
polynomial in A can be rewritten using terms of order at most n� 1.

3.9 Show that for a linear time-invariant system, the following notions of controllability are
equivalent:

(a) Reachability to the origin (x0  0).

(b) Reachability from the origin (0 xf).

(c) Small-time local controllability (x0  B(x0, ✏)).

3.10 (Sontag 3.3.4) Assume that the pair (A,B) is not controllable with dimR(A,B) = rankWc =
r < n. From Lemma 3.3.3, there exists an invertible matrix T 2 Rn⇥n such that the matrices
Ã := T

�1
AT and B̃ := T

�1
B have the block structure

Ã =


A1 A2

0 A3

�
, B̃ =


B1

0

�
,

where A1 2 Rr⇥r and B1 2 Rr⇥m. Prove that (A1, B1) is itself a controllable pair.

3.11 (Sontag 3.3.6) Prove that if

A =

2

666664

�1 0 · · · 0 0
0 �2 · · · 0 0
...

...
. . .

...
...

0 0 · · · �n�1 0
0 0 · · · 0 �n

3

777775
, B =

2

666664

b1

b2
...

bn�1

bn

3

777775

then (A,B) is controllable if and only if �i 6= �j for each i 6= j and all bi 6= 0.

3.12 (Sontag 3.3.14) Let (A,B) correspond to a time-invariant discrete-time linear system ⌃. Recall
that null-controllability means that every state can be controlled to zero. Prove that the following
conditions are equivalent:

(a) ⌃ is null-controllable.

(b) The image of An is contained in the image of R(A,B).

(c) In the decomposition in Sontag, Lemma 3.3.3, A3 is nilpotent.

(d) rank[�I �A,B] = n for all nonzero � 2 R̃.

(e) rank[�I �A,B] = n for all � 2 R̃.
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Chapter 4

Optimal Control

This set of notes expands on Chapter 6 of Feedback Systems by Åström and Murray (FBS2e), which
introduces the concepts of reachability and state feedback. We also expand on topics in Section 7.5
of FBS2e in the area of feedforward compensation. Beginning with a review of optimization, we
introduce the notion of Lagrange multipliers and provide a summary of the Pontryagin’s maximum
principle. Using these tools we derive the linear quadratic regulator for linear systems and describe
its usage.

Prerequisites Readers should be familiar with modeling of input/output control systems us-
ing di↵erential equations, linearization of a system around an equilibrium point and state space
control of linear systems, including reachability and eigenvalue assignment. Some familiarity with
optimization of nonlinear functions is also assumed.

4.1 Review: Optimization

Optimization refers to the problem of choosing a set of parameters that maximize or minimize a
given function. In control systems, we are often faced with having to choose a set of parameters for
a control law so that the some performance condition is satisfied. In this chapter we will seek to
optimize a given specification, choosing the parameters that maximize the performance (or minimize
the cost). In this section we review the conditions for optimization of a static function, and then
extend this to optimization of trajectories and control laws in the remainder of the chapter. More
information on basic techniques in optimization can be found in [6] or the introductory chapter
of [5].

Consider first the problem of finding the minimum of a smooth function F : Rn ! R. That is,
we wish to find a point x⇤ 2 Rn such that F (x⇤)  F (x) for all x 2 Rn. A necessary condition for
x
⇤ to be a minimum is that the gradient of the function be zero at x⇤:

@F

@x
(x⇤) = 0.

The function F (x) is often called a cost function and x
⇤ is the optimal value for x. Figure S4.1

gives a graphical interpretation of the necessary condition for a minimum. Note that these are not
su�cient conditions; the points x1 and x2 and x

⇤ in the figure all satisfy the necessary condition
but only one is the (global) minimum.
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dx

x⇤

x1

x2

x

F (x)

@F
@x dx

Figure S4.1: Optimization of functions. The minimum of a function occurs at a point where the
gradient is zero.

x1

x⇤
F (x)

G(x) = 0

x2

(a) Constrained optimization

x2

G(x) = 0

@G
@x x3

x1

(b) Constraint normal vectors

Figure S4.2: Optimization with constraints. (a) We seek a point x
⇤ that minimizes F (x) while

lying on the surface G(x) = 0 (a line in the x1x2 plane). (b) We can parameterize the constrained
directions by computing the gradient of the constraint G. Note that x 2 R2 in (a), with the third
dimension showing F (x), while x 2 R3 in (b).

The situation is more complicated if constraints are present. Let Gi : Rn ! R, i = 1, . . . , k be a
set of smooth functions with Gi(x) = 0 representing the constraints. Suppose that we wish to find
x
⇤ 2 Rn such that Gi(x⇤) = 0 and F (x⇤)  F (x) for all x 2 {x 2 Rn : Gi(x) = 0, i = 1, . . . , k}. This

situation can be visualized as constraining the point to a surface (defined by the constraints) and
searching for the minimum of the cost function along this surface, as illustrated in Figure S4.2a.

A necessary condition for being at a minimum is that there are no directions tangent to the
constraints that also decrease the cost. Given a constraint function G(x) = (G1(x), . . . , Gk(x)), x 2
Rn we can represent the constraint as a n� k dimensional surface in Rn, as shown in Figure S4.2b.
The tangent directions to the surface can be computed by considering small perturbations of the
constraint that remain on the surface:

Gi(x+ �x) ⇡ Gi(x) +
@Gi

@x
(x)�x = 0. =) @Gi

@x
(x)�x = 0,

where �x 2 Rn is a vanishingly small perturbation. It follows that the normal directions to the
surface are spanned by @Gi/@x, since these are precisely the vectors that annihilate an admissible
tangent vector �x.

Using this characterization of the tangent and normal vectors to the constraint, a necessary
condition for optimization is that the gradient of F is spanned by vectors that are normal to the
constraints, so that the only directions that increase the cost violate the constraints. We thus
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require that there exist scalars �i, i = 1, . . . , k such that

@F

@x
(x⇤) +

kX

i=1

�i
@Gi

@x
(x⇤) = 0.

If we let G =
⇥
G1 G2 . . . Gk

⇤T
, then we can write this condition as

@F

@x
+ �

T @G

@x
= 0 (S4.1)

the term @F/@x is the usual (gradient) optimality condition while the term @G/@x is used to
“cancel” the gradient in the directions normal to the constraint.

An alternative condition can be derived by modifying the cost function to incorporate the
constraints. Defining eF = F +

P
�iGi, the necessary condition becomes

@ eF
@x

(x⇤) = 0.

The scalars �i are called Lagrange multipliers. Minimizing eF is equivalent to the optimization given
by

min
x

�
F (x) + �

T
G(x)

�
. (S4.2)

The variables � can be regarded as free variables, which implies that we need to choose x such that
G(x) = 0 in order to insure the cost is minimized. Otherwise, we could choose � to generate a large
cost.

Example 4.1 (Two free variables with a constraint). Consider the cost function given by

F (x) = F0 + (x1 � a)2 + (x2 � b)2,

which has an unconstrained minimum at x = (a, b). Suppose that we add a constraint G(x) = 0
given by

G(x) = x1 � x2.

With this constraint, we seek to optimize F subject to x1 = x2. Although in this case we could
do this by simple substitution, we instead carry out the more general procedure using Lagrange
multipliers.

The augmented cost function is given by

F̃ (x) = F0 + (x1 � a)2 + (x2 � b)2 + �(x1 � x2),

where � is the Lagrange multiplier for the constraint. Taking the derivative of F̃ , we have

@F̃

@x
=
⇥
2x1 � 2a+ � 2x2 � 2b� �

⇤
.

Setting each of these equations equal to zero, we have that at the minimum

x
⇤
1 = a� �/2, x

⇤
2 = b+ �/2.
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The remaining equation that we need is the constraint, which requires that x⇤1 = x
⇤
2. Using these

three equations, we see that �⇤ = a� b and we have

x
⇤
1 =

a+ b

2
, x

⇤
2 =

a+ b

2
.

To verify the geometric view described above, note that the gradients of F and G are given by

@F

@x
=
⇥
2x1 � 2a 2x2 � 2b

⇤
,

@G

@x
=
⇥
1 �1

⇤
.

At the optimal value of the (constrained) optimization, we have

@F

@x
=
⇥
b� a a� b

⇤
,

@G

@x
=
⇥
1 �1

⇤
.

Although the derivative of F is not zero, it is pointed in a direction that is normal to the constraint,
and hence we cannot decrease the cost while staying on the constraint surface.

We have focused on finding the minimum of a function. We can switch back and forth between
maximum and minimum by simply negating the cost function:

max
x

F (x) = min
x

�
�F (x)

�

We see that the conditions that we have derived are independent of the sign of F since they only
depend on the gradient begin zero in approximate directions. Thus finding x

⇤ that satisfies the
conditions corresponds to finding an extremum for the function.

Very good software is available for numerically solving optimization problems of this sort. The
NPSOL and SNOPT libraries are available in FORTRAN (and C). In MATLAB, the fmin function
can be used to solve a constrained optimization problem.

4.2 Optimal Control of Systems

Consider now the optimal control problem:

min
u( · )

Z T

0
L(x, u) dt+ V

�
x(T )

�

subject to the constraint
ẋ = f(x, u), x 2 Rn

, u 2 Rm
.

Abstractly, this is a constrained optimization problem where we seek a feasible trajectory (x(t), u(t))
that minimizes the cost function

J(x, u) =

Z T

0
L(x, u) dt+ V

�
x(T )

�
.

More formally, this problem is equivalent to the “standard” problem of minimizing a cost func-
tion J(x, u) where (x, u) 2 L2[0, T ] (the set of square integrable functions) and h(z) = ẋ(t) �
f(x(t), u(t)) = 0 models the dynamics. The term L(x, u) is referred to as the integral cost and
V (x(T )) is the final (or terminal) cost.

There are many variations and special cases of the optimal control problem. We mention a few
here:
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Infinite horizon optimal control If we let T = 1 and set V = 0, then we seek to optimize a
cost function over all time. This is called the infinite horizon optimal control problem, versus the
finite horizon problem with T < 1. Note that if an infinite horizon problem has a solution with
finite cost, then the integral cost term L(x, u) must approach zero as t ! 1.

Linear quadratic (LQ) optimal control If the dynamical system is linear and the cost function
is quadratic, we obtain the linear quadratic optimal control problem:

ẋ = Ax+Bu, J =

Z T

0

�
x
T
Qx+ u

T
Ru
�
dt+ x

T (T )P1x(T ).

In this formulation, Q � 0 penalizes state error, R > 0 penalizes the input and P1 > 0 penalizes
terminal state. This problem can be modified to track a desired trajectory (xd, ud) by rewriting
the cost function in terms of (x� xd) and (u� ud).

Terminal constraints It is often convenient to ask that the final value of the trajectory, denoted
xf , be specified. We can do this by requiring that x(T ) = xf or by using a more general form of
constraint:

 i(x(T )) = 0, i = 1, . . . , q.

The fully constrained case is obtained by setting q = n and defining  i(x(T )) = xi(T ) � xi,f . For
a control problem with a full set of terminal constraints, V (x(T )) can be omitted (since its value
is fixed).

Time optimal control If we constrain the terminal condition to x(T ) = xf , let the terminal
time T be free (so that we can optimize over it) and choose L(x, u) = 1, we can find the time-
optimal trajectory between an initial and final condition. This problem is usually only well-posed
if we additionally constrain the inputs u to be bounded.

A very general set of conditions are available for the optimal control problem that captures most
of these special cases in a unifying framework. Consider a nonlinear system

ẋ = f(x, u), x = Rn
,

x(0) given, u 2 ⌦ ⇢ Rm
,

where f(x, u) = (f1(x, u), . . . fn(x, u)) : Rn ⇥ Rm ! Rn. We wish to minimize a cost function J

with terminal constraints:

J =

Z T

0
L(x, u) dt+ V (x(T )),  (x(T )) = 0.

The function  : Rn ! Rq gives a set of q terminal constraints. Analogous to the case of optimizing
a function subject to constraints, we construct the Hamiltonian:

H = L+ �
T
f = L+

X
�ifi.

The variables � are functions of time and are often referred to as the costate variables. A set of
necessary conditions for a solution to be optimal was derived by Pontryagin [7].
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Theorem 4.1 (Maximum Principle). If (x⇤, u⇤) is optimal, then there exists �⇤(t) 2 Rn and
⌫
⇤ 2 Rq such that

ẋi =
@H

@�i
� �̇i =

@H

@xi

x(0) given,  (x(T )) = 0

�(T ) =
@V

@x
(x(T )) + ⌫

T @ 

@x

and

H(x⇤(t), u⇤(t),�⇤(t))  H(x⇤(t), u,�⇤(t)) for all u 2 ⌦

The form of the optimal solution is given by the solution of a di↵erential equation with boundary
conditions. If u = arg minH(x, u,�) exists, we can use this to choose the control law u and solve
for the resulting feasible trajectory that minimizes the cost. The boundary conditions are given by
the n initial states x(0), the q terminal constraints on the state  (x(T )) = 0 and the n � q final
values for the Lagrange multipliers

�(T ) =
@V

@x
(x(T )) + ⌫

T @ 

@x
.

In this last equation, ⌫ is a free variable and so there are n equations in n+ q free variables, leaving
n� q constraints on �(T ). In total, we thus have 2n boundary values.

The maximum principle is a very general (and elegant) theorem. It allows the dynamics to be
nonlinear and the input to be constrained to lie in a set ⌦, allowing the possibility of bounded
inputs. If ⌦ = Rm (unconstrained input) and H is di↵erentiable, then a necessary condition for
the optimal input is

@H

@u
= 0.

We note that even though we are minimizing the cost, this is still usually called the maximum
principle (an artifact of history).

Sketch of proof. We follow the proof given by Lewis and Syrmos [5], omitting some of the details
required for a fully rigorous proof. We use the method of Lagrange multipliers, augmenting our
cost function by the dynamical constraints and the terminal constraints:

J̃(x( · ), u( · ),�( · ), ⌫) = J(x, u) +

Z T

0
��T (t)

�
ẋ(t)� f(x, u)

�
dt+ ⌫

T
 (x(T ))

=

Z T

0

�
L(x, u)� �

T (t)
�
ẋ(t)� f(x, u)

�
dt

+ V (x(T )) + ⌫
T
 (x(T )).

Note that � is a function of time, with each �(t) corresponding to the instantaneous constraint
imposed by the dynamics. The integral over the interval [0, T ] plays the role of the sum of the
finite constraints in the regular optimization.

Making use of the definition of the Hamiltonian, the augmented cost becomes

J̃(x( · ), u( · ),�( · ), ⌫) =
Z T

0

�
H(x, u)� �

T (t)ẋ
�
dt+ V (x(T )) + ⌫

T
 (x(T )).
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We can now “linearize” the cost function around the optimal solution x(t) = x
⇤(t) + �x(t), u(t) =

u
⇤(t) + �u(t), �(t) = �

⇤(t) + ��(t) and ⌫ = ⌫
⇤ + �⌫. Taking T as fixed for simplicity (see [5] for the

more general case), the incremental cost can be written as

�J̃ = J̃(x⇤ + �x, u
⇤ + �u,�

⇤ + ��, ⌫
⇤ + �⌫)� J̃(x⇤, u⇤,�⇤, ⌫⇤)

⇡
Z T

0

✓
@H

@x
�x+

@H

@u
�u� �

T
�ẋ+

⇣
@H

@�
� ẋ

T
⌘
��

◆
dt

+
@V

@x
�x(T ) + ⌫

T @ 

@x
�x(T ) + �⌫

T
 
�
x(T ), u(T )

�
,

where we have omitted the time argument inside the integral and all derivatives are evaluated along
the optimal solution.

We can eliminate the dependence on �ẋ using integration by parts:

�
Z T

0
�
T
�ẋ dt = ��T (T )�x(T ) + �

T (0)�x(0) +

Z T

0
�̇
T
�x dt.

Since we are requiring x(0) = x0, the �x(0) term vanishes and substituting this into �J̃ yields

�J̃ ⇡
Z T

0

⇣
@H

@x
+ �̇

T
⌘
�x+

@H

@u
�u+

⇣
@H

@�
� ẋ

T
⌘
��

�
dt

+
⇣
@V

@x
+ ⌫

T @ 

@x
� �

T (T )
⌘
�x(T ) + �⌫

T
 
�
x(T ), u(T )

�
.

To be optimal, we require �J̃ = 0 for all �x, �u, �� and �⌫, and we obtain the (local) conditions in
the theorem.

4.3 Examples

To illustrate the use of the maximum principle, we consider a number of analytical examples.
Additional examples are given in the exercises.

Example 4.2 (Scalar linear system). Consider the optimal control problem for the system

ẋ = ax+ bu, (S4.3)

where x = R is a scalar state, u 2 R is the input, the initial state x(t0) is given, and a, b 2 R are
positive constants. We wish to find a trajectory (x(t), u(t)) that minimizes the cost function

J = 1
2

Z tf

t0

u
2(t) dt+ 1

2cx
2(tf ),

where the terminal time tf is given and c > 0 is a constant. This cost function balances the final
value of the state with the input required to get to that state.

To solve the problem, we define the various elements used in the maximum principle. Our
integral and terminal costs are given by

L = 1
2u

2(t) V = 1
2cx

2(tf ).
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We write the Hamiltonian of this system and derive the following expressions for the costate �:

H = L+ �f = 1
2u

2 + �(ax+ bu)

�̇ = �@H
@x

= �a�, �(tf ) =
@V

@x
= cx(tf ).

This is a final value problem for a linear di↵erential equation in � and the solution can be shown
to be

�(t) = cx(tf )e
a(tf�t)

.

The optimal control is given by

@H

@u
= u+ b� = 0 ) u

⇤(t) = �b�(t) = �bcx(tf )e
a(tf�t)

.

Substituting this control into the dynamics given by equation (S4.3) yields a first-order ODE in x:

ẋ = ax� b
2
cx(tf )e

a(tf�t)
.

This can be solved explicitly as

x
⇤(t) = x(to)e

a(t�to) +
b
2
c

2a
x
⇤(tf )

h
e
a(tf�t) � e

a(t+tf�2to)
i
.

Setting t = tf and solving for x(tf ) gives

x
⇤(tf ) =

2a ea(tf�to)x(to)

2a� b2c
�
1� e

2a(tf�to)
�

and finally we can write

u
⇤(t) = � 2abc ea(2tf�to�t)

x(to)

2a� b2c
�
1� e

2a(tf�to)
� (S4.4)

x
⇤(t) = x(to)e

a(t�to) +
b
2
c e

a(tf�to)x(to)

2a� b2c
�
1� e

2a(tf�to)
�
h
e
a(tf�t) � e

a(t+tf�2to)
i
. (S4.5)

We can use the form of this expression to explore how our cost function a↵ects the optimal
trajectory. For example, we can ask what happens to the terminal state x⇤(tf ) and c ! 1. Setting
t = tf in equation (S4.5) and taking the limit we find that

lim
c!1

x
⇤(tf ) = 0.

Example 4.3 (Bang-bang control). The time-optimal control program for a linear system has a
particularly simple solution. Consider a linear system with bounded input

ẋ = Ax+Bu, |u|  1,

and suppose we wish to minimize the time required to move from an initial state x0 to a final state
xf . Without loss of generality we can take xf = 0. We choose the cost functions and terminal
constraints to satisfy

J =

Z T

0
1 dt,  (x(T )) = x(T ).
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To find the optimal control, we form the Hamiltonian

H = 1 + �
T (Ax+Bu) = 1 + (�TA)x+ (�TB)u.

Now apply the conditions in the maximum principle:

ẋ =
@H

@�
= Ax+Bu

��̇ =
@H

@x
= A

T
�

u = arg min H = �sgn(�TB)

The optimal solution always satisfies this equation (since the maximum principle gives a necessary
condition) with x(0) = x0 and x(T ) = 0. It follows that the input is always either +1 or �1,
depending on �TB. This type of control is called “bang-bang” control since the input is always on
one of its limits. If �T (t)B = 0 then the control is not well defined, but if this is only true for a
specific time instant (e.g., �T (t)B crosses zero) then the analysis still holds.

4.4 Linear Quadratic Regulators

In addition to its use for computing optimal, feasible trajectories for a system, we can also use
optimal control theory to design a feedback law u = ↵(x) that stabilizes a given equilibrium point.
Roughly speaking, we do this by continuously re-solving the optimal control problem from our
current state x(t) and applying the resulting input u(t). Of course, this approach is impractical
unless we can solve explicitly for the optimal control and somehow rewrite the optimal control as
a function of the current state in a simple way. In this section we explore exactly this approach for
the linear quadratic optimal control problem.

We begin with the the finite horizon, linear quadratic regulator (LQR) problem, given by

ẋ = Ax+Bu, x 2 Rn
, u 2 Rn

, x0 given,

J̃ =
1

2

Z T

0

�
x
T
Qxx+ u

T
Quu

�
dt+

1

2
x
T (T )P1x(T ),

where Qx � 0, Qu > 0, P1 � 0 are symmetric, positive (semi-) definite matrices. Note the factor of
1
2 is usually left out, but we included it here to simplify the derivation. (The optimal control will
be unchanged if we multiply the entire cost function by 2.)

To find the optimal control, we apply the maximum principle. We begin by computing the
Hamiltonian H:

H =
1

2
x
T
Qxx+

1

2
u
T
Quu+ �

T (Ax+Bu).

Applying the results of Theorem 4.1, we obtain the necessary conditions

ẋ =

✓
@H

@�

◆T

= Ax+Bu x(0) = x0

��̇ =

✓
@H

@x

◆T

= Qxx+A
T
� �(T ) = P1x(T )

0 =
@H

@u
= Quu+ �

T
B.

(S4.6)
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The last condition can be solved to obtain the optimal controller

u = �Q
�1
u B

T
�,

which can be substituted into the dynamic equation (S4.6) To solve for the optimal control we must
solve a two point boundary value problem using the initial condition x(0) and the final condition
�(T ). Unfortunately, it is very hard to solve such problems in general.

Given the linear nature of the dynamics, we attempt to find a solution by setting �(t) = P (t)x(t)
where P (t) 2 Rn⇥n. Substituting this into the necessary condition, we obtain

�̇ = Ṗ x+ Pẋ = Ṗ x+ P (Ax�BQ
�1
u B

T
P )x,

=) �Ṗ x� PAx+ PBQ
�1
u BPx = Qxx+A

T
Px.

This equation is satisfied if we can find P (t) such that

�Ṗ = PA+A
T
P � PBQ

�1
u B

T
P +Qx, P (T ) = P1. (S4.7)

This is a matrix di↵erential equation that defines the elements of P (t) from a final value P (T ).
Solving it is conceptually no di↵erent than solving the initial value problem for vector-valued
ordinary di↵erential equations, except that we must solve for the individual elements of the matrix
P (t) backwards in time. Equation (S4.7) is called the Riccati ODE.

An important property of the solution to the optimal control problem when written in this
form is that P (t) can be solved without knowing either x(t) or u(t). This allows the two point
boundary value problem to be separated into first solving a final-value problem and then solving a
time-varying initial value problem. More specifically, given P (t) satisfying equation (S4.7), we can
apply the optimal input

u(t) = �Q
�1
u B

T
P (t)x.

and then solve the original dynamics of the system forward in time from the initial condition
x(0) = x0. Note that this is a (time-varying) feedback control that describes how to move from any
state to the origin in time T .

An important variation of this problem is the case when we choose T = 1 and eliminate the
terminal cost (set P1 = 0). This gives us the cost function

J =

Z 1

0
(xTQxx+ u

T
Quu) dt. (S4.8)

Since we do not have a terminal cost, there is no constraint on the final value of � or, equivalently,
P (t). We can thus seek to find a constant P satisfying equation (S4.7). In other words, we seek to
find P such that

PA+A
T
P � PBQ

�1
u B

T
P +Qx = 0. (S4.9)

This equation is called the algebraic Riccati equation. Given a solution, we can choose our input as

u = �Q
�1
u B

T
Px.

This represents a constant gain K = Q
�1
u B

T
P where P is the solution of the algebraic Riccati

equation.
The implications of this result are interesting and important. First, we notice that if Qx > 0 and

the control law corresponds to a finite minimum of the cost, then we must have that limt!1 x(t) = 0,
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otherwise the cost will be unbounded. This means that the optimal control for moving from any
state x to the origin can be achieved by applying a feedback u = �Kx for K chosen as described
as above and letting the system evolve in closed loop. More amazingly, the gain matrix K can be
written in terms of the solution to a (matrix) quadratic equation (S4.9). This quadratic equation can
be solved numerically: in MATLAB the command K = lqr(A, B, Qx, Qu) provides the optimal
feedback compensator.

In deriving the optimal quadratic regulator, we have glossed over a number of important details.
It is clear from the form of the solution that we must have Qu > 0 since its inverse appears in the
solution. We would typically also have Qx > 0 so that the integral cost is only zero when x = 0,
but in some instances we might only care about certain states, which would imply that Qx � 0.
For this case, if we let Qx = H

T
H (always possible), our cost function becomes

J =

Z 1

0
x
T
H

T
Hx+ u

T
Quu dt =

Z 1

0
kHxk2 + u

T
Quu dt.

A technical condition for the optimal solution to exist is that the pair (A,H) be detectable (implied
by observability). This makes sense intuitively by considering y = Hx as an output. If y is not
observable then there may be non-zero initial conditions that produce no output and so the cost
would be zero. This would lead to an ill-conditioned problem and hence we will require that Qx � 0
satisfy an appropriate observability condition.

We summarize the main results as a theorem.

Theorem 4.2. Consider a linear control system with quadratic cost:

ẋ = Ax+Bu, J =

Z 1

0
x
T
Qxx+ u

T
Quu dt.

Assume that the system defined by (A,B) is reachable, Qx = Q
T
x � 0 and Qu = Q

T
u > 0. Further

assume that Qx = H
T
H and that the linear system with dynamics matrix A and output matrix H

is observable. Then the optimal controller satisfies

u = �Q
�1
u B

T
Px, PA+A

T
P � PBQ

�1
u B

T
P = �Qx,

and the minimum cost from initial condition x(0) is given by J
⇤ = x

T (0)Px(0).

The basic form of the solution follows from the necessary conditions, with the theorem asserting
that a constant solution exists for T = 1 when the additional conditions are satisfied. The full
proof can be found in standard texts on optimal control, such as Lewis and Syrmos [5] or Athans
and Falb [1]. A simplified version, in which we first assume the optimal control is linear, is left as
an exercise.

Example 4.4 (Optimal control of a double integrator). Consider a double integrator system

dx

dt
=


0 1
0 0

�
x+


0
1

�
u

with quadratic cost given by

Qx =


q
2 0
0 0

�
, Qu = 1.
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The optimal control is given by the solution of matrix Riccati equation (S4.9). Let P be a symmetric
positive definite matrix of the form

P =


a b

b c

�
.

Then the Riccati equation becomes

�b

2 + q
2

a� bc

a� bc 2b� c
2

�
=


0 0
0 0

�
,

which has solution

P =

"p
2q3 q

q
p
2q

#
.

The controller is given by
K = Q

�1
u B

T
P = [q

p
2q].

The feedback law minimizing the given cost function is then u = �Kx.
To better understand the structure of the optimal solution, we examine the eigenstructure of

the closed loop system. The closed-loop dynamics matrix is given by

Acl = A�BK =


0 1
�q �

p
2q

�
.

The characteristic polynomial of this matrix is

�
2 +

p
2q�+ q.

Comparing this to �2 + 2⇣!0�+ !
2
0, we see that

!0 =
p
q, ⇣ =

1p
2
.

Thus the optimal controller gives a closed loop system with damping ratio ⇣ = 0.707, giving a good
tradeo↵ between rise time and overshoot (see FBS2e).

4.5 Choosing LQR weights

One of the key questions in LQR design is how to choose the weights Qx and Qu. To choose specific
values for the cost function weights Qx and Qu, we must use our knowledge of the system we are
trying to control. A particularly simple choice is to use diagonal weights

Qx =

2

64
q1 0

. . .

0 qn

3

75 , Qu =

2

64
⇢1 0

. . .

0 ⇢n

3

75 .

For this choice of Qx and Qu, the individual diagonal elements describe how much each state and
input (squared) should contribute to the overall cost. Hence, we can take states that should remain
small and attach higher weight values to them. Similarly, we can penalize an input versus the states
and other inputs through choice of the corresponding input weight ⇢j .
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(a) Harrier “jump jet”

y

✓

F1

F2

r

x

(b) Simplified model

Figure S4.3: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its engine
thrust downward so that it can “hover” above the ground. Some air from the engine is diverted to
the wing tips to be used for maneuvering. As shown in (b), the net thrust on the aircraft can be
decomposed into a horizontal force F1 and a vertical force F2 acting at a distance r from the center
of mass.

Choosing the individual weights for the (diagonal) elements of the Qx and Qu matrix can be
done by deciding on a weighting of the errors from the individual terms. Bryson and Ho [2] have
suggested the following method for choosing the matrices Qx and Qu in equation (S4.8): (1) choose
qi and ⇢j as the inverse of the square of the maximum value for the corresponding xi or uj ; (2)
modify the elements to obtain a compromise among response time, damping and control e↵ort.
This second step can be performed by trial and error.

It is also possible to choose the weights such that only a given subset of variable are considered
in the cost function. Let z = Hx be the output we want to keep small and verify that (A,H) is
observable. Then we can use a cost function of the form

Qx = H
T
H Qu = ⇢I.

The constant ⇢ allows us to trade o↵ kzk2 versus ⇢kuk2.
We illustrate the various choices through an example application.

Example 4.5 (Thrust vectored aircraft). Consider the thrust vectored aircraft example introduced
in FBS2e, Example 2.9. The system is shown in Figure S4.3, reproduced from FBS2e. The linear
quadratic regulator problem was illustrated in Example 6.8, where the weights were chosen as
Qx = I and Qu = ⇢I. Figure S4.4 reproduces the step response for this case.

A more physically motivated weighted can be computing by specifying the comparable errors
in each of the states and adjusting the weights accordingly. Suppose, for example that we consider
a 1 cm error in x, a 10 cm error in y and a 5� error in ✓ to be equivalently bad. In addition, we
wish to penalize the forces in the sidewards direction (F1) since these results in a loss in e�ciency.

53



0 2 4 6 8 10
0

0.5

1

1.5
x

y

Time (seconds)

A
m

p
lit

u
d

e

(a) Step response in x and y
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(b) E↵ect of control weight ⇢

Figure S4.4: Step response for a vectored thrust aircraft. The plot in (a) shows the x and y positions
of the aircraft when it is commanded to move 1 m in each direction. In (b) the x motion is shown
for control weights ⇢ = 1, 102, 104. A higher weight of the input term in the cost function causes
a more sluggish response.
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(a) Step response in x and y
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(b) Inputs for the step response

Figure S4.5: Step response for a vector thrust aircraft using physically motivated LQR weights (a).
The rise time for x is much faster than in Figure S4.4a, but there is a small oscillation and the
inputs required are quite large (b).

This can be accounted for in the LQR weights be choosing

Qx =

2

6666664

100 0 0 0 0 0
0 1 0 0 0 0
0 0 2⇡/9 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7777775
, Qu =


10 0
0 1

�
.

The results of this choice of weights are shown in Figure S4.5.

4.6 Advanced Topics

In this section we briefly touch on some related topics in optimal control, with reference to more
detailed treatments where appropriate.

Dynamic programming
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General quadratic cost functions

ẋ = Ax+Bu J =

Z 1

0

L(x,u)
z }| {⇣
x
T
Qxx+ u

T
Quu+ x

T
Su

⌘
dt,

where the S term is almost always left out.

Singular extremals The necessary conditions in the maximum principle enforce the constraints
through the of the Lagrange multipliers �(t). In some instances, we can get an extremal curve that
has one or more of the �’s identically equal to zero. This corresponds to a situation in which the
constraint is satisfied strictly through the minimization of the cost function and does not need to
be explicitly enforced. We illustrate this case through an example.

Example 4.6 (Nonholonomic integrator). Consider the minimum time optimization problem for
the nonholonomic integrator introduced in Example 1.2 in OBC with input constraints |ui|  1.
The Hamiltonian for the system is given by

H = 1 + �1u1 + �2u2 + �3x2u1

and the resulting equations for the Lagrange multipliers are

�̇1 = 0, �̇2 = �3x2, �̇3 = 0. (S4.10)

It follows from these equations that �1 and �3 are constant. To find the input u corresponding to
the extremal curves, we see from the Hamiltonian that

u1 = �sgn(�1 + �3x2u1), u2 = �sgn�2.

These equations are well-defined as long as the arguments of sgn( · ) are non-zero and we get
switching of the inputs when the arguments pass through 0.

An example of an abnormal extremal is the optimal trajectory between x0 = (0, 0, 0) to xf =
(⇢, 0, 0) where ⇢ > 0. The minimum time trajectory is clearly given by moving on a straight line
with u1 = 1 and u2 = 0. This extremal satisfies the necessary conditions but with �2 ⌘ 0, so that
the “constraint” that ẋ2 = u2 is not strictly enforced through the Lagrange multipliers.

Abnormal extremals

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1.

Minimum length curve:

J =

Z T

0
u
2
1 + u

2
2 dt

Show that x0 to xf gives multiple solutions.
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4.7 Further Reading

There are a number of excellent books on optimal control. One of the first (and best) is the book by
Pontryagin et al. [7]. During the 1960s and 1970s a number of additional books were written that
provided many examples and served as standard textbooks in optimal control classes. Athans and
Falb [1] and Bryson and Ho [2] are two such texts. A very elegant treatment of optimal control from
the point of view of optimization over general linear spaces is given by Luenberger [6]. Finally, a
modern engineering textbook that contains a very compact and concise derivation of the key results
in optimal control is the book by Lewis and Syrmos [5].

Exercises

4.1 (a) Let G1, G2, . . . , Gk be a set of row vectors on a Rn. Let F be another row vector on Rn

such that for every x 2 Rn satisfying Gix = 0, i = 1, . . . , k, we have Fx = 0. Show that there are
constants �1,�2, . . . ,�k such that

F =
kX

i=1

�iGi.

(b) Let x
⇤ 2 Rn be an the extremal point (maximum or minimum) of a function f subject to

the constraints gi(x) = 0, i = 1, . . . , k. Assuming that the gradients @gi(x⇤)/@x are linearly
independent, show that there are k scalers �i, i = 1, . . . , k such that the function

f̃(x) = f(x) +
kX

i=1

�igi(x)

has an extremal point at x⇤.

4.2 Consider the following control system

q̇ = u

Ẏ = qu
T � uq

T

where u 2 Rm and Y 2 Rm⇥m is a skew symmetric matrix, Y T = Y .

(a) For the fixed end point problem, derive the form of the optimal controller minimizing the
following integral

1

2

Z 1

0
u
T
u dt.

(b) For the boundary conditions q(0) = q(1) = 0, Y (0) = 0 and

Y (1) =

2

4
0 �y3 y2

y3 0 �y1

�y2 y1 0

3

5

for some y 2 R3, give an explicit formula for the optimal inputs u.
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(c) (Optional) Find the input u to steer the system from (0, 0) to (0, Ỹ ) 2 Rm ⇥ Rm⇥m where
Ỹ

T = �Ỹ .

(Hint: if you get stuck, there is a paper by Brockett on this problem.)

4.3 In this problem, you will use the maximum principle to show that the shortest path between
two points is a straight line. We model the problem by constructing a control system

ẋ = u,

where x 2 R2 is the position in the plane and u 2 R2 is the velocity vector along the curve. Suppose
we wish to find a curve of minimal length connecting x(0) = x0 and x(1) = xf . To minimize the
length, we minimize the integral of the velocity along the curve,

J =

Z 1

0
kẋk dt =

Z 1

0

p
ẋT ẋ dt,

subject to to the initial and final state constraints. Use the maximum principle to show that the
minimal length path is indeed a straight line at maximum velocity. (Hint: try minimizing using the
integral cost ẋT ẋ first and then show this also optimizes the optimal control problem with integral
cost kẋk.)

4.4 Consider the optimal control problem for the system

ẋ = �ax+ bu,

where x = R is a scalar state, u 2 R is the input, the initial state x(t0) is given, and a, b 2 R are
positive constants. (Note that this system is not quite the same as the one in Example 4.2.) The
cost function is given by

J = 1
2

Z tf

t0

u
2(t) dt+ 1

2cx
2(tf ),

where the terminal time tf is given and c is a constant.

(a) Solve explicitly for the optimal control u⇤(t) and the corresponding state x
⇤(t) in terms of t0,

tf , x(t0) and t and describe what happens to the terminal state x
⇤(tf ) as c ! 1.

(b) Show that the system is di↵erentially flat with appropriate choice of output(s) and compute
the state and input as a function of the flat output(s).

(c) Using the polynomial basis {tk, k = 0, . . . ,M � 1} with an appropriate choice of M , solve for
the (non-optimal) trajectory between x(t0) and x(tf ). Your answer should specify the explicit input
ud(t) and state xd(t) in terms of t0, tf , x(t0), x(tf ) and t.

(d) Let a = 1 and c = 1. Use your solution to the optimal control problem and the flatness-based
trajectory generation to find a trajectory between x(0) = 0 and x(1) = 1. Plot the state and input
trajectories for each solution and compare the costs of the two approaches.

(e) (Optional) Suppose that we choose more than the minimal number of basis functions for the
di↵erentially flat output. Show how to use the additional degrees of freedom to minimize the cost
of the flat trajectory and demonstrate that you can obtain a cost that is closer to the optimal.
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4.5 Repeat Exercise 4.4 using the system

ẋ = �ax
3 + bu.

For part (a) you need only write the conditions for the optimal cost.

4.6 Consider the problem of moving a two-wheeled mobile robot (e.g., a Segway) from one position
and orientation to another. The dynamics for the system is given by the nonlinear di↵erential
equation

ẋ = cos ✓ v, ẏ = sin ✓ v, ✓̇ = !,

where (x, y) is the position of the rear wheels, ✓ is the angle of the robot with respect to the x axis,
v is the forward velocity of the robot and ! is spinning rate. We wish to choose an input (v,!) that
minimizes the time that it takes to move between two configurations (x0, y0, ✓0) and (xf , yf , ✓f ),
subject to input constraints |v|  L and |!|  M .

Use the maximum principle to show that any optimal trajectory consists of segments in which
the robot is traveling at maximum velocity in either the forward or reverse direction, and going
either straight, hard left (! = �M) or hard right (! = +M).

Note: one of the cases is a bit tricky and cannot be completely proven with the tools we have
learned so far. However, you should be able to show the other cases and verify that the tricky case
is possible.

4.7 Consider a linear system with input u and output y and suppose we wish to minimize the
quadratic cost function

J =

Z 1

0

�
y
T
y + ⇢u

T
u
�
dt.

Show that if the corresponding linear system is observable, then the closed loop system obtained
by using the optimal feedback u = �Kx is guaranteed to be stable.

4.8 Consider the system transfer function

H(s) =
s+ b

s(s+ a)
, a, b > 0

with state space representation

ẋ =


0 1
0 �a

�
x+


0
1

�
u,

y =
⇥
b 1

⇤
x

and performance criterion

V =

Z 1

0
(x21 + u

2)dt.

(a) Let

P =


p11 p12

p21 p22

�
,

with p12 = p21 and P > 0 (positive definite). Write the steady state Riccati equation as a system
of four explicit equations in terms of the elements of P and the constants a and b.
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(b) Find the gains for the optimal controller assuming the full state is available for feedback.

4.9 Consider the optimal control problem for the system

ẋ = ax+ bu J = 1
2

Z tf

t0

u
2(t) dt+ 1

2cx
2(tf ),

where x 2 R is a scalar state, u 2 R is the input, the initial state x(t0) is given, and a, b 2 R are
positive constants. We take the terminal time tf as given and let c > 0 be a constant that balances
the final value of the state with the input required to get to that position. The optimal trajectory
is derived in Example 4.2.

Now consider the infinite horizon cost

J = 1
2

Z 1

t0

u
2(t) dt

with x(t) at t = 1 constrained to be zero.

(a) Solve for u
⇤(t) = �bPx

⇤(t) where P is the positive solution corresponding to the algebraic
Riccati equation. Note that this gives an explicit feedback law (u = �bPx).

(b) Plot the state solution of the finite time optimal controller for the following parameter values

a = 2, b = 0.5, x(t0) = 4,

c = 0.1, 10, tf = 0.5, 1, 10.

(This should give you a total of 6 curves.) Compare these to the infinite time optimal control
solution. Which finite time solution is closest to the infinite time solution? Why?

4.10 Consider the lateral control problem for an autonomous ground vehicle from Example 1.1 in
OBC. We assume that we are given a reference trajectory r = (xd, yd) corresponding to the desired
trajectory of the vehicle. For simplicity, we will assume that we wish to follow a straight line in
the x direction at a constant velocity vd > 0 and hence we focus on the y and ✓ dynamics:

ẏ = sin ✓ vd, ✓̇ =
1

l
tan� vd.

We let vd = 10 m/s and l = 2 m.

(a) Design an LQR controller that stabilizes the position y to yd = 0. Plot the step and frequency
response for your controller and determine the overshoot, rise time, bandwidth and phase margin
for your design. (Hint: for the frequency domain specifications, break the loop just before the
process dynamics and use the resulting SISO loop transfer function.)

(b) Suppose now that yd(t) is not identically zero, but is instead given by yd(t) = r(t). Modify
your control law so that you track r(t) and demonstrate the performance of your controller on a
“slalom course” given by a sinusoidal trajectory with magnitude 1 meter and frequency 1 Hz.
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Chapter 5

State Estimation

Preliminary reading The material in this chapter extends the material Chapter 8 of FBS2e.
Readers should be familiar with the material in Sections 8.1–8.3 in preparation for the more ad-
vanced topics discussed here.

5.1 Concepts and Definitions

Let D = (U ,⌃,Y, s, r) be an input/output dynamical system on time range T with input/output
map

⇢(t, t0, x0, u( · )) = r(t, s(t, t0, x0, u( · )), u(t)).

Let x0, z0 2 ⌃ be di↵erent initial conditions and let t1, t2 2 T be two di↵erent times with t1 < t2.
We write U[t1,t2] to represent input signals that are restricted to the time range [t1, t2] 2 T .

Definition 5.1 (Distinguishability). A control u 2 U[t1,t2] distinguishes between x(t0) = x0 and
x(t0) = z0 if

⇢(t2, t0, x0, u( · )) 6= ⇢(t2, t0, z0, u( · )).

The initial states (x0, t0) and (z0, t0) are distinguishable on [t1, t2] if there exists t 2 [t1, t2] and
input u 2 U[t1,t] that distinguishes between x0 and z0 on [t0, t].

If a system is distinguishable for every pair of initial states x0, z0 2 ⌃ then in principle it should
be possible to find an input u( · ) such that measurement of the input u( · ) and output y( · ) allows
the initial state to be determined.

Definition 5.2 (Observability). The system D is observable on [t1, t2] if every initial state x0 is
distinguishable on [t1, t2] from all other initial states z0 6= x0. The system is observable if for every
t1 < t2, D is observable on [t1, t2].

If a system is observable then for any initial condition x0 there exists an input u( · ) that can be
used to uniquely determine the initial condition by measurement of the output over an (arbitrary)
interval of time. A process that measures u and y and returns x0 is called an observer.. For many
systems (including linear systems), the initial state can be determined for any input that is applied
to the system. The definition of observability in FBS2e is specialized to the linear case and hence
does not make use of the ability to choose the input u(t).
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For an observable system, it is possible to create a state estimator (also sometimes called an
observer) that measures the input u(t) and output y(t) of the system and provides an estimate
x̂(t) of the current state. To see how such an estimator might be constructed, consider a nonlinear
system of the form

dx

dt
= f(x, u), y = h(x).

A common form for an estimator is to construct a copy of the system dynamics and update the
estimated state based on the error between the predicted output and the measured output:

dx̂

dt
= f(x̂, u) + ↵(y � h(x̂)).

We see that the estimator requires the current input u in order to update the estimated state to
match the dynamics of the underlying model.

As in the case of reachability, it may not always be possible to observe the entire initial state,
but only the initial state restricted to some subspace. However, if the unobservable portion of the
state is asymptotically stable, then an estimator that converges to the current state can still be
constructed since the unobservable portion of the state is converging to zero. This leads to the
concept of detectability of a system, which is roughly the equivalent of stabilizability.

5.2 Observability for Linear State Space Systems

For linear systems we have that

⇢(t, t0, x0, u( · )) = Ce
At
x0 +

Z t

t0

Ce
A(t�⌧)

Bu(⌧) d⌧.

It follows that whether two initial states are distinguishable is independent of the input u( · ) since
the e↵ect of the input is the same for any initial condition. Hence observability depends only on
the pair (A,C), and we say that the system is observable if the pair (A,C) is observable.

In FBS2e, a simple characterization of observability is given by considering the output y(t) =
Cx(t) and its derivatives, leading to the observability rank condition. A more insightful analysis is
obtained by considering the linear operator MT : ⌃ ! Y given by

�
MT (x0)

�
(t) = Ce

At
x0.

The question of observability is equivalent to whether the map MT is an injection (one-to-one) so
that given any output y(t) in the range of MT there exists a unique x0 such that y(t) = (MTx0)(t).�

To characterize the injectivity of MT we compute the adjoint operator M⇤
T : Y⇤ ! ⌃⇤, which

can be shown to be

M⇤
T (�( · )) =

Z T

t0

e
AT⌧

C
T
�(⌧) d⌧,

where �( · ) 2 Y⇤. The map MT is injective if its rank is equal to the dimension of ⌃, and the rank
of MT is equal to the rank of the operator M⇤

TMT , given by

Wo(T ) =

Z T

t0

e
AT⌧

C
T
Ce

A⌧
d⌧.
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Wo is an n ⇥ n square, symmetric matrix. In the case that Wo(T ) is not full rank, the (right)
null space of Wo(T ) gives the subspace of initial conditions whose values cannot be distinguished
through measurement of the output. As in the case of reachability, it can be shown that the rank
of Wo(T ) is independent of T .

To see how this definition of M⇤
T arises, recall that for a linear space V we can define the dual

space V
⇤ of linear functions on V . If V = Rn then we can associate linear functionals ↵ 2 V

⇤ with
vectors and we write

h↵, xi = ↵
T
x,

where we think of x and ↵ as a column vectors. Similarly, in the signal space Y : T ! U ⇢ Rm, a
dual element � 2 Y⇤ acts on a signal y 2 Y according to the formula

h�, yi =
Z T

0
�
T(⌧)y(⌧) d⌧.

Given a linear mapping MT : ⌃ ! Y defined as (MTx0)(t) = Ce
At
x0, its dual M⇤

T : Y⇤ ! ⌃⇤

must satisfy

hM⇤
T�, x0i = h�,MTx0i =

Z T

0
�
T(⌧)Ce

A⌧
x0 d⌧,

and hence

M⇤
T� =

Z T

t0

e
AT⌧

C
T
�(⌧) d⌧.

4
Given the input u( · ) and the output y( · ) on an interval [t0, T ] the values of the initial state

can be computed using Wo. Assume first that u( · ) = 0 so that the system dynamics are given by
y(t) = Ce

At
x0. The value for x0 is given by

x0 = (M⇤
TMT )

�1M⇤
T y( · ) =

�
W0(T )

��1
Z T

t0

e
AT⌧

C
T
y(⌧) d⌧.

In the case that the model is not correct and so the output trajectory is not in the range of MT ,
this estimate represents the best estimate (in a least squares sense) of the initial state. If the system
has a nonzero input, then this estimate should be applied to the function

ỹ(t) = y(t)�
Z t

t0

Ce
A(t�⌧)

Bu(⌧) d⌧

which removes the contribution of the input from the measured state y(t).
If a linear system is stable, we can compute the observability Gramian Wo 2 Rn⇥n:

Wo = lim
T!1

Wo(T ) =

Z 1

t0

e
AT⌧

C
T
Ce

A⌧
d⌧.

A (stable) linear system is observable if and only if the observabilty Gramian has rank n. The
observability Gramian can be computed using linear algebra:

Theorem 5.1. A
T
Wo +WoA = �C

T
C.

As in the case of reachability, there are a number of equivalent conditions for observability of a
linear system.
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Theorem 5.2 (Observability conditions). A linear system with dynamics matrix A and output
matrix C is observable if an only if the following equivalent conditions hold:

1. Wo(T ) has rank n for any T > 0.

2. Wo has rank n (requires A stable).

3. Popov-Bellman-Hautus (PBH) test:

rank


C

sI �A

�
= n

for all s 2 C (su�ces to check for eigenvalue of A).

4. Observability rank test:

rank

2

6664

C

CA

...
CA

n�1

3

7775
= n.

5.3 Combining Estimation and Control

As discussed in FBS2e, a state estimator can be combined with a state feedback controller to design
the dynamics of a reachable and observable linear system. In the case that a system is not reachable
and/or not observable, the ability to stabilize the system to an equilibrium point will depend on
whether the unreachable modes have unstable eigenvalues and the ability to detect the system state
around an equilibrium will depend on whether the unobservable modes have stable eigenvalues. The
Kalman decomposition, described briefly in Section 8.3, can be used to understand the structure
of the system. We expand on this description here by describing some of the properties of the
subspaces in the Kalman decomposition.

Consider a linear system in standard form

dx

dt
x = Ax+Bu, y = Cx.

Assume that the system is neither reachable nor observable. As we saw in Section 3.2, if a system
is not reachable then there exists a subspace E r of reachable states. It can be shown that this
subspace is A invariant (easy proof: look at the structure of A in Theorem 3.6) and Er = rangeWr.
Similarly, we see from the analysis above that there exists a subspace Eo of states that are not
observable, consisting of states in the null space of Wo(T ). This subspace is also A invariant
(Exercise 5.4).

Another characterization of Er and Eo is that Er is the smallest A-invariant subspace contain-
ing B, which is equivalent to rangeWc. Similarly, Eo is the smallest A-invariant subspace that
annihilates C. We can now decompose the state space as Rn = Ero � Ero � Ero � Ero, where
A � B = {x + y : x 2 A, y 2 B}. Define Ero = Er \ Eo. This space is uniquely defined and is A

invariant.
Using these subspaces, it is possible to construct a transformation that extends the decompo-

sition in Theorem 3.6 to account for both reachability and observability.
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Theorem 5.3 (Kalman decomposition). Let (A,B,C) represent an input/output linear system with
n states and define r = rankWc  n and q = nullityWo  n. Then there exists a transformation
T 2 Rn⇥n such that the dynamics can be transformed into the block matrix form

dx

dt
=

2

664

Aro 0 ⇤ 0
⇤ Aro ⇤ ⇤
0 0 Aro 0
0 0 ⇤ Aro

3

775+

2

664

Bro

Bro
0
0

3

775

y =
⇥
Cro 0 Cro 0

⇤
,

where ⇤ represents non-zero elements. Furthermore, in this basis:

Ero = span

2

664

I

0
0
0

3

775 , Ero = span

2

664

0
I

0
0

3

775 , Ero = span

2

664

0
0
I

0

3

775 , Ero = span

2

664

0
0
0
I

3

775

Proof. (Sketch) Choose Ero such that Er = Ero � Ero. This space is not uniquely defined and
is not A invariant, but can be constructed by completing the basis for Er. Choose Ero such that
Eo = Ero�Ero. This space is also not uniquely defined nor is it A invariant, but can be constructed
by completing the basis for Eo. Finally, choose Ero such that Rn = Ero � Ero � Ero � Ero. Ero is
not uniquely defined and is not A invariant, but can be constructed by completing the basis for Rn.
The transformation T is constructed by using the basis elements for each subspace and rewriting
the dynamics in terms of this basis.

While the Kalman decomposition allows us to identify subspaces corresponding to reachable
and observable states, it does not give us any indications of which states are di�cult to reach
and/or di�cult to reach. For control systems we are particularly interested in those states that are
di�cult to control and also do not significantly influence the output (so they are hard to observe)
since those states can be discounted during the control design process.

Consider a system (A,B,C) with controllability Gramian Wc and observability Gramian Wo.
We define the Hankel singular values as the eigenvalues of the matrix Wco := WcWo. Intuitively,
a system (or subsystem) with small Hankel singular values correspond to a situation in which it is
di�cult to observe a state and/or di�cult to control that state. It turns out that it is possible to
find a state transformation in which this intuition can be made more precise.

Theorem 5.4. Suppose that Wc and Wo are such that they have independent eigenspaces (either
no shared eigenvalues or shared eigenvalues have no mutual (generalized) eigenvalues. Then there
exists a transformation T : Rn ! Rn such that in the transformed set of coordinates z = Tx,

W̃c = W̃o =

2

64
�1 0 0

0
. . . 0

0 0 �n

3

75 ,

where {�i} are the Hankel singular values for the system.

In this representation we can define a set of subspaces ⌃i corresponding to each singular value
�i > 0. If we assume the �i’s are ordered from largest to smallest, then these subspaces correspond
to the most controllable/observable to the least controllable/observable.
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5.4 Exercises

5.1 (FBS 8.1) Consider the system given by

dx

dt
= Ax+Bu, y = Cx,

where x 2 Rn, u 2 Rp, and y 2 Rq. Show that the states can be determined from the input u

and the output y and their derivatives if the observability matrix Wo given by equation (8.4) has
n independent rows.

5.2 (FBS 8.2) Consider a system under a coordinate transformation z = Tx, where T 2 Rn⇥n is
an invertible matrix. Show that the observability matrix for the transformed system is given by
fWo = WoT

�1 and hence observability is independent of the choice of coordinates.

5.3 (FBS 8.3) Show that the system depicted in Figure 8.2 is not observable.

5.4 Show that the set of unobservable states for a linear system with dynamics matrix A and
output matrix C is an A-invariant subspace and that it is equal to the largest A-invariant subspace
annihilated by C.

5.5 (FBS 8.4) Show that if a system is observable, then there exists a change of coordinates z = Tx

that puts the transformed system into observable canonical form.

5.6 (FBS 8.9) Consider the linear system (8.2), and assume that the observability matrix Wo is
invertible. Show that

x̂ = W
�1
o

⇥
y ẏ ÿ · · · y

(n�1)
⇤T

is an observer. Show that it has the advantage of giving the state instantaneously but that it also
has some severe practical drawbacks.

5.7 (FBS 8.15) Consider a linear system characterized by the matrices

A =

2

664

�2 1 �1 2
1 �3 0 2
1 1 �4 2
0 1 �1 �1

3

775 , B =

2

664

2
2
2
1

3

775 , C =
⇥
0 1 �1 0

⇤
, D = 0.

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)

5.8 Consider the system

dx

dt
=


�4 1
�6 1

�
x+


3
7

�
u, y =

⇥
1 �1

⇤
x.

Transform the system to observable canonical form.

5.9 Consider a control system having state space dynamics

dx

dt
=


�↵� � 1
�↵� 0

�
x+


0
k

�
u, y =

⇥
1 0

⇤
x.
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(a) Construct an observer for the system and find expressions for the observer gain L =
⇥
l1 l2

⇤T

such that the observer has natural frequency !0 and damping ratio ⇣.

(b) Suppose that we choose a di↵erent output

ỹ =
⇥
1 �

⇤
x.

Are there any values of � for which the system is not observable? If so, provide an example of an
initial condition and output where it is not possible to uniquely determine the state of the system
by observing its inputs and outputs.

5.10 Show that the design of an observer by eigenvalue assignment is unique for single-output
systems. Construct examples that show that the problem is not necessarily unique for systems with
many outputs.

5.11 Consider the normalized double integrator described by

d

dt


x1

x2

�
=


0 1
0 0

� 
x1

x2

�
+


0
1

�
u = Ax+Bu, y =

⇥
1 0

⇤ x1
x2

�
= Cx

Determine an observer and find the observer gain that gives dynamics characterized by the char-
acteristic polynomial s2 + 2⇣0!0s+ !

2
0.
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