CALIFORNIA INSTITUTE OF TECHNOLOGY Computing and Mathematical Sciences CDS 131

R. Murray Fall 2018 Homework Set #2

Issued: 10 Oct 2018 Due: 17 Oct 2018

Note: In the upper left hand corner of the *second* page of your homework set, please put the number of hours that you spent on this homework set (including reading).

- 1. [FBS 6.1] Show that if y(t) is the output of a linear system corresponding to input u(t), then the output corresponding to an input $\dot{u}(t)$ is given by $\dot{y}(t)$. (Hint: Use the definition of the derivative: $\dot{z}(t) = \lim_{\epsilon \to 0} (z(t+\epsilon) - z(t))/\epsilon$.)
- 2. [FBS 6.2] Show that a signal u(t) can be decomposed in terms of the impulse function $\delta(t)$ as

$$u(t) = \int_0^t \delta(t - \tau) u(\tau) \, d\tau$$

and use this decomposition plus the principle of superposition to show that the response of a linear, time-invariant system to an input u(t) (assuming a zero initial condition) can be written as

$$y(t) = \int_0^t h(t-\tau)u(\tau) \, d\tau,$$

where h(t) is the impulse response of the system. (Hint: Use the definition of the Riemann integral.)

3. [FBS 6.4] Assume that $\zeta < 1$ and let $\omega_d = \omega_0 \sqrt{1 - \zeta^2}$. Show that

$$\exp \begin{pmatrix} -\zeta \omega_0 & \omega_d \\ -\omega_d & -\zeta \omega_0 \end{pmatrix} t = e^{-\zeta \omega_0 t} \begin{pmatrix} \cos \omega_d t & \sin \omega_d t \\ -\sin \omega_d t & \cos \omega_d t \end{pmatrix}.$$

Also show that

$$\exp\left(\begin{pmatrix} -\omega_0 & \omega_0 \\ 0 & -\omega_0 \end{pmatrix} t\right) = e^{-\omega_0 t} \begin{pmatrix} 1 & \omega_0 t \\ 0 & 1 \end{pmatrix}.$$

- 4. [FBS 6.6] Consider a linear system with a Jordan form that is non-diagonal.
 - (a) Prove Proposition 6.3 by showing that if the system contains a real eigenvalue $\lambda = 0$ with a nontrivial Jordan block, then there exists an initial condition with a solution that grows in time.
 - (b) Extend this argument to the case of complex eigenvalues with $\operatorname{Re} \lambda = 0$ by using the block Jordan form

$$J_i = \begin{pmatrix} 0 & \omega & 1 & 0 \\ -\omega & 0 & 0 & 1 \\ 0 & 0 & 0 & \omega \\ 0 & 0 & -\omega & 0 \end{pmatrix}.$$

5. [FBS 6.8] Consider a linear discrete-time system of the form

$$x[k+1] = Ax[k] + Bu[k],$$
 $y[k] = Cx[k] + Du[k].$

(a) Show that the general form of the output of a discrete-time linear system is given by the discrete-time convolution equation:

$$y[k] = CA^{k}x[0] + \sum_{j=0}^{k-1} CA^{k-j-1}Bu[j] + Du[k].$$

- (b) Show that a discrete-time linear system is asymptotically stable if and only if all the eigenvalues of A have a magnitude strictly less than 1.
- 6. Consider a stable linear time-invariant system. Assume that the system is initially at rest and let the input be $u = \sin \omega t$, where ω is much larger than the magnitudes of the eigenvalues of the dynamics matrix. Show that the output is approximately given by

$$y(t) \approx |G(i\omega)| \sin \left(\omega t + \arg G(i\omega)\right) + \frac{1}{\omega}h(t),$$

where G(s) is the frequency response of the system and h(t) its impulse response.

7. Consider the system

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} x + \begin{pmatrix} 0\\ 1 \end{pmatrix} u, \qquad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x,$$

which is stable but not asymptotically stable. Show that if the system is driven by the bounded input $u = \cos t$ then the output is unbounded.