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1. Consider the following linear system
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where v and w are Gaussian white noise with covariances r > 0 and 1, respectively. Suppose
we wish to design a controller that minimizes the cost function
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where q > 0.

(a) Design a controller for the system using a Kalman filter and optimal linear quadratic
regulator. Give the transfer function for the resulting compensator.

(b) Show that the resulting closed loop system has vanishingly small gain margin for r and q

chosen sufficiently large. (Hint: you should spend about 30 minutes trying this problem
and then go and read the 1976 paper by Doyle [available on the course web page]. Be
careful about differences in notation between the paper and the problem statement.)

2. Consider the class of perturbed plants of the form

P̃ =
P

1 + δfbW2P
,

where W2 is a fixed stable weighting function with W2 strictly proper and δfb(s) is an unknown
stable transfer function with ‖δfb‖∞ ≤ 1. Assume that C is a controller achieving stability
for P . Prove that C provides internal stability for the perturbed plant if ‖W2PS‖∞ < 1.

Students who are not doing the course project should complete the following problem (worth 20
points):

3. This problem shows that the stability margin is critically dependent on the type of pertur-
bation. The setup is a unity-feedback loop with controller C(s) = 1 and process dynamics
P̃ (s) = P (s) + ∆(s), where

P (s) =
10

s2 + 0.2s + 1



(a) Assume ∆(s) is a stable transfer function. Compute the largest β such that the feedback
system is internally stable for all ‖∆‖∞ < β.

(b) Now suppose that ∆ is a real number. Determine the bounds on ∆ such that the closed
loop system is stable and compare to the first part. (Hint: compute the closed loop
transfer function analytically and determine when the eigenvalues go unstable.)

4. Consider the following model for the pitch dynamics of the Caltech ducted fan:

P (s) =
r

Js2 + bs + mgl

g = 9.8 m/sec2 m = 1.5 kg b = 0.05 kg/sec

l = 0.05 m J = 0.0475 kg m2 r = 0.25 m

We wish to design a robust controller that satisfies the following: performance specification:

• Steady state error of less than 1%

• Tracking error of less than 5% from 0 to 1 Hz (remember to convert this to rad/sec).

(a) Write the above specification as a weighted sensitivity specification. Choose an explicit
weight W1(s) so that the specification is satisfied if ‖W1S‖ < 1 and show that the
specification can be satisfied using a proportional controller.

(b) Consider a plant perturbation of 20% variation in the value of r around the nominal
value. Design a controller that satisfies the nominal specification and provides robust
stabilty with respect to this perturbation. (Hint: You can use any technique to design
this controller, but you might try designing an estimator + state feedback controller
as a first cut to see if you can do it. If you can’t find a controller that satisfies the
specification after a couple of attempts, try a lead compensator.)
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