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Goals

• Describe variations and examples of sensor fusion: Alice + information form

• Describe nonlinear, non-Gaussian extensions to KF: MHE + particle filters

Reading (optional)

• Cremean et al, “Alice: A Networked Control System for Autonomous Desert 

Driving”, J. Field Robotics, 2006.  (Available at http://gc.caltech.edu/public) 

• Ben Grochalsky's thesis on information filter (link on web page)

• CDS 270-2 web page (MHE, particle filters)
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Application: Autonomous Driving

Computing

• 6 Dell 750 PowerEdge Servers (P4, 3GHz)

• 1 IBM Quad Core AMD64 (fast!)

• 1 Gb/s switched ethernet

Sensing

• 5 cameras: 2 stereo pairs, roadfinding

• 5 LADARs: long, med*2, short, bumper

• 2 GPS units + 1 IMU (LN 200)

• 0.5-1 Gb/s raw data rates

Cremean et al, 2006
J. Field Robotics
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State Estimation

State estimation: astate

• Broadcast current vehicle state to all 

modules that require it (many)

• Timing of state signal is critical - use to 

calibrate sensor readings

• Quality of state estimate is critical: use to 

place terrain features in global map

• Issue: GPS jumps

- Can get 20-100 cm jumps as 

satellites change positions

- Maintain continuity of state at same 

time as insuring best accuracy

Astate

• HW: 2 GPS units (2-10 Hz update), 1 

inertial measurement unit (gryo, accel @ 

400 Hz)

• In: actuator commands, actuator values, 

engine state

• Out: time-tagged position, orientation, 

velocities, accelerations

• Use vehicle wheel speed + brake 

command/position to check if at rest

GPS

GPS

IMU

Kalman
Filter

• Actuator
state

• Engine 
state

Adrive

Vehicle position, orientation,
velocities, accelerations
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Terrain Estimation

Sensor processing

• Construct local elevation based on 

measurements and state estimate

• Compute speed based on gradients

Sensor fusion

• Combine individual speed maps

• Process “missing data” cells

Road finding

• Identify regions with road features

• Increase allowable speed along roads

LadarFeeder, StereoFeeder

• HW: LADAR (serial), stereo (firewire)

• In: Vehicle state

• Out: Speed map (deltas)

• Multiple computers to maintain speed

FusionMapper

• In: Sensor speed maps (deltas)

• Output: fused speed map

• Run on quadcore AMD64

FusionSensor
Elevation

Map
Speed
Map

Sensor
Elevation

Map
Speed
Map

Sensor
Elevation

Map
Speed
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Example: Kalman Filtering for Terrain (Gillula)

KF Framework:

• State to estimate is elevation of each cell

• Elevation is static – so no time updates!

Kalman Filtering:

Propagation Equations:

Update Equations:
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The Results – Accurate Elevation and Covariance

Low Elevation

High Elevation

Elevation Map:
• Individual sensors 
• Fused map

Differences:
• Less no-data!
• Just as accurate

Covariance Map:

A: All sensors

B: Just LADARs

C: LADAR in place

D: Long-range 
LADAR

E: LADAR in place

F: Sparse 
measurements
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Extension: Information Filter

Idea: rewrite Kalman filter in terms of inverse covariance

Resulting update equations become linear:

Remarks

• Information form allows simple addition for correction step: “additional measurements add information”

• Sensor fusion: each additional sensor increases the information

• Multi-rate sensing: whenever new information arrives, add it to the scaled estimate, information matrix; 
no date => prediction update only

• Derivation of the information filter is non-trivial; not easy to derive from Kalman filter
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I[k|k] = I[k|k − 1] +
q∑

i=1

Ωi[k]

Ẑ[k|k] = Ẑ[k|k − 1] +
q∑

i=1

Ψi[k]

I[k|k] := P−1[k|k], Ẑ[k|k] := P−1[k|k]X̂[k|k]

Ωi[k] := CT
i R−1

Wi
[k]Ci, Ψi[k] := CT

i R−1
Wi

[k]CiX̂[k|k]

X̂[k|k − 1] = (1− Γ[k]FT )A−T X̂[k − 1|k − 1] + I[k|k − 1]Bu

I[k|k − 1] = M [k]− Γ[k]Σ[k]ΓT [k]
M [k] = A−T P−1[k − 1|k − 1]A−1

Γ[k] = M [k]Fσ−1[k]

Σ[k] = FT M [k]F + R−1
v
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Extension: Moving Horizon Estimation

System description:

Pose as optimization problem:

Remarks:

• Basic idea is to compute out the “noise” that is 

required for data to be consistent with model and

penalize noise based on how well it fits its distribution

8

Henrik Sandberg, 2005
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Extension: Moving Horizon Estimation

Solution: write out probability and maximize

Special case: Gaussian noise

• Log of the probabilities sum of squares for noise terms

• Note: switched use of w and v from Friedland (and course notes)

9
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Extension: Moving Horizon Estimation

Key idea: estimate over a finite window in the past

Example (Rao et al, 2003): nonlinear model with positive disturbances

• EKF handles nonlinearity, but assumes noise

is zero mean => misses positive drift

10
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Sequential Monte Carlo

• Rough idea: keep track of many possible states of the system via individual “particles”

• Propogate each particle (state estimate + noise) via the system model with noise

• Truncate those particles that are particularly unlikely, redistribute weights

Remarks

• Can handle nonlinear, non-Gaussian processes

• Very computationally intensive; typically need to exploit problem structure

• Being explored in many application areas (eg, SLAM in robotics)

• Lots of current debate about information filters versus MHE versus particle filters

Extension: Particle Filters

11
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Modern Control System Design

Traditional Control System: controller + process

• Corresponds to “inner loop” of most control system designs

Modern Control System: optimization-based design + robust analysis

• Replace reference with reference trajectory (Weeks 1-4)

• Replace process output with estimated output (Weeks 5-8)

• Replace “inner loop” controller with robust controller (Week 9-10 + CDS 212/213)
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