CDS 110b: Lecture 8-2
KF Extensions and Applications

Richard M. Murray
27 February 2008

Goals
» Describe variations and examples of sensor fusion: Alice + information form
* Describe nonlinear, non-Gaussian extensions to KF: MHE + particle filters

Reading (optional)
* Cremean et al, “Alice: A Networked Control System for Autonomous Desert
Driving”, J. Field Robotics, 2006. (Available at http://gc.caltech.edu/public)
¢ Ben Grochalsky's thesis on information filter (link on web page)
e CDS 270-2 web page (MHE, particle filters)

Cremean et al, 2006
J. Field Robotics

Application: Autonomous Driving
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Computing
e 6 Dell 750 PowerEdge Servers (P4, 3GHz)
e 11BM Quad Core AMD64 (fast!)
® 1 Gb/s switched ethernet

Sensing

e 5 cameras: 2 stereo pairs, roadfinding
5 LADARSs: long, med*2, short, bumper
2 GPS units + 1 IMU (LN 200)
0.5-1 Gb/s raw data rates
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State Estimation
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State estimation: astate

e Broadcast current vehicle state to all

modules that require it (many)

e Timing of state signal is critical - use to

calibrate sensor readings

e Quality of state estimate is critical: use to

place terrain features in global map
e |ssue: GPS jumps

= Can get 20-100 cm jumps as
satellites change positions

= Maintain continuity of state at same

time as insuring best accuracy
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Vehicle position, orientation,

velocities, accelerations

e HW: 2 GPS units (2-10 Hz update), 1

inertial measurement unit (gryo, accel @
400 Hz)

* |n: actuator commands, actuator values,
engine state
« Out: time-tagged position, orientation,
velocities, accelerations

+ Use vehicle wheel speed + brake
command/position to check if at rest
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Terrain Estimation
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Sensor processing

e Construct local elevation based on
measurements and state estimate

e Compute speed based on gradients

Sensor fusion

e Combine individual speed maps
® Process “missing data” cells

Road finding

o |dentify regions with road features

e |ncrease allowable speed along roads
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* HW: LADAR (serial), stereo (firewire)
¢ In: Vehicle state
* Out: Speed map (deltas)
« Multiple computers to maintain speed

FusionMapper

« In: Sensor speed maps (deltas)
» Output: fused speed map
¢ Run on quadcore AMD64
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Example: Kalman Filtering for Terrain (Gillula)

KF Framework:
« State to estimate is elevation of each cell
« Elevation is static — so no time updates!

Kalman Filtering:
Propagation Equations:

Zii(k+1|k)
P; i(k+ 1|k)

Zi.j (K[k)
P j(klk)

Update Equations:
sk k1) = PEglk+ k) + Pij(k + 1K)z
P j(k+1lk)+ R
Pik+1lk+1) = R‘*-'(-k%lw)ﬂ
P i(k+1k)+R

L1111l
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The Results — Accurate Elevation and Covariance

High
ovariance

Covariance

19 Aug 2006 Jeremy Gillula (Caltech CDS)

Covariance Map:
A: All sensors

B: Just LADARs
C: LADAR in place

D: Long-range
LADAR

E: LADAR in place

F: Sparse
measurements




Extension: Information Filter

Idea: rewrite Kalman filter in terms of inverse covariance

I[k|k] := P~ [k|k], Z[k|k] :== P~ k| k] X [k|k]
Qilk] == CT Ry} KIC, U [k] == C] Ry} [K]Ci X [Kk|K]

Resulting update equations become linear:
X[klk—1]= Q1 -TkKFTATX[k -1k — 1] + I[k|k — 1] Bu
I[k|k — 1] = M[k] — T[k]Z[k]TT K]

q Mkl =A"TP k- 1|k —1]A7!
I1k|K] =I[k|k—1]+ZQ¢[k] T[k] = M[k]Fo~[]
i Sk = FTM[K)F + Ry
Z[k|k] = Z[klk — 1]+ > W;[k]

Remarks
e [nformation form allows simple addition for correction step: “additional measurements add information”

e Sensor fusion: each additional sensor increases the information

e Multi-rate sensing: whenever new information arrives, add it to the scaled estimate, information matrix;
no date => prediction update only

e Derivation of the information filter is non-trivial; not easy to derive from Kalman filter
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Henrik Sandberg, 2005
Extension: Moving Horizon Estimation

System description:

X1 = [r(2r, we)

x, €Xp, wp €W v €V
Vi = hp(xz) + vp RS TR B TRE TR

The problem: Given the data : ol
YVi={yi:0<i<k},

find the “best” (to be defined) estimate %;,,, of x4, .
(m = 0 filtering, m > 0 prediction, and m < 0 smoothing. - |

Pose as optimization problem: - T S

{%o,..., %7} = arg max p(xo,...,%r|Yr_1)
{x0,rx7}

Remarks: ash _
e Basic idea is to compute out the “noise” that is Z o}
required for data to be consistent with model and
penalize noise based on how well it fits its distribution af
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Extension: Moving Horizon Estimation
Solution: write out probability and maximize

arg max p(xo,...,%7|Y0,...,¥7-1)

{xgsmxp }
=arg max px(%0) [ [ o (9r — R(xk))p(xhs1|x2)
{xo ..... xT} =0
71
= arg max > " logpu, (95 — () + log p(x-1|%x) + log P,y (%0)
0T p=g

Special case: Gaussian noise
T-1
min }Z lye — hr(oe) 3 + [weligo + 120 — %oll3,
k=0

20,{wo,-.. W _1

e Log of the probabilities sum of squares for noise terms
e Note: switched use of w and v from Friedland (and course notes)
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Extension: Moving Horizon Estimation

Key idea: estimate over a finite window in the past

] Estimation Window

7-1 T-N-1
@5 = min <Z Ly(wy,vr) + Z Lk(wk,vk)+r(xo)>

iz \p2rin =0

i Ly (wp,vp) + ZT—N(z)> . -

min
RNty \ 27N

Example (Rao et al, 2003): nonlinear model with positive disturbances

X1 k41 = 0.99x1!k + 0.2x2,k 4 owp >0 FJJ_TE( I
0.5x2,k o /“!' il )
Xok+1 = —O.le,k + PR - Wwp . 1 11 ", e/
1 + x2 k I .l 7 w)
’ o N
Yk = X1k — 3x2k + Uk N
" o x N
. . . P4 A A 2 W
o EKF handles nonlinearity, but assumes noise I 'M:”:ﬂu ,;" )\. A
i i iti i | e Y 1y
is zero mean => misses positive drift " i M [, RIAl
!
e = %0 ) w © ) © w0
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Extension: Particle Filters

Sequential Monte Carlo
e Rough idea: keep track of many possible states of the system via individual “particles”
e Propogate each particle (state estimate + noise) via the system model with noise
e Truncate those particles that are particularly unlikely, redistribute weights

Remarks
e Can handle nonlinear, non-Gaussian processes
e \ery computationally intensive; typically need to exploit problem structure
e Being explored in many application areas (eg, SLAM in robotics)
e Lots of current debate about information filters versus MHE versus particle filters
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Modern Control System Design

L A <—<—|
,| Trajectory R _
Generation @I Controller Process Estimator

Traditional Control System: controller + process
e Corresponds to “inner loop” of most control system designs

Modern Control System: optimization-based design + robust analysis
o Replace reference with reference trajectory (Weeks 1-4)
e Replace process output with estimated output (Weeks 5-8)
e Replace “inner loop” controller with robust controller (Week 9-10 + CDS 212/213)
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