CDS 110b: Lecture 3-1
Linear Quadratic Regulators

Richard M. Murray
23 January 2008

Goals:
» Derive the linear quadratic regulator and demonstrate its use

Reading:
« RMM course notes (available on web page)
e Lewis and Syrmos, Section 3.3
 Friedland, Chapter 9 (different derivation, but same result)

Homework #3

» Design LQR controllers for some representative systems
» Due Wed, 30 Jan by 5 pm, in box outside 109 Steele




Review from last lecture

Trajectory
Generation

Trajectory Generation via Optimal Control:

T
J :/O L(z,u) dt + V(2(T))

Controller
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~» Estimator
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rz = Ax + Bu
x(0) given
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Y(x(T)) =0

Today: focus on special case of a linear quadratic regulator

T
xr=R" J = /0 21 Qz + v Rudt + (T Piz(T)

p - :
ueR no terminal constraints
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Linear Quadratic Regulator (finite time)

Problem Statement

= = R" ~ 1 /T 1
r=Az+ Buz=R J = —/ (:UTQ:U + uTRu) dt + —z1 (T)P1z(T)
x(0) given u e RP 2J0 2

» Factor of 1/2 simplifies some math below; optimality is not affected

Solution: use the maximum principle

H = ZCTQCI} —I— uTRu —|— AT(AZC + BU) Note: in the notes (and

the lecture), we use
the notation Q = Q_x

H\T a
T = (8_) = Azr _|_ Bu a:(O) = zg and R=Q u.
O\
. H\T
“A\ = (%—) =Qz + AT\ MNT) = Pyz(T)
€T
H
0 =%— —Ru+MB =— uw=_R1BT).
u

 This is still a two point boundary value problem = hard to solve
« Note that solution is linear in x (because A is linear in x, treated as an input)
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murray
Text Box
Note: in the notes (and the lecture), we use the notation Q = Q_x and R = Q_u.


Simplified Form of the Solution

Can simplify solution by guessing that A = P(7) x(¢)

, OHNT T From maximum
A= (%) = Qe+ ATA  AT) = Pia(T) — o0
A= Pr+ Pi=Pr+ P(Az— BR™'BTP)x  —— Substitute
I A = P(1) x(9)

— Pz — PAz + PBR™1BPz = Qx + A” Px.

Solution exists if we can find P(f) satisfying

—P =PA+ATP-PBR BT P+Q P(T) = P;
e This equation is called the Riccati ODE; matrix differential equation
» Can solve for P(f) backwards in time and then apply u(¢) = -R! B P(f) x
« Solving x(¢) forward in time gives optimal state (and input): x*(¢), u™(¢)
« Note that P(r) can be computed once (ahead of time) = allows us to find the

optimal trajectory from different points just by re-integrating state equation
with optimal input
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Finite Time LQR Summary

A

___| Trajectory Cox)ller Process —— Estimator
Generation

Problem: find trajectory that minimizes
J=—/ r  Qr+u Ru) dt+ —x (1T')Pyx(T
x(0) given wu e RP 20< © ) 2 (1) P12 (T)
Solution: time-varying linear feedback
u(t) = —R™1BP(t)z.

—P = PA+ATP-PBR BT P+Q P(T) = P;
« Note: this is in feedback form = can actually eliminate the controller (!)
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Infinite Time LQR

Extend horizon to 7T = « and eliminate terminal constraint:

B x + Buz J = / (z'Qz + v! Ru) dt

z(0) given wueRP 0

Solution: same form, but can show P is constant
u= K= K = _R_lBTP —— State feedback (constant gain)
0=PA+ AP — PBR™IBTP + Q —— Algebraic Riccati equation

Remarks
e In MATLAB, K = 1gr (A, B, Q, R)
e Require R >0 but O = 0 + must satisfy “observability” condition
 Alternative form: minimize “output” y = H x

(®.@) o0
L= /O +THT Ho+u” Rudt = /O 1Hz|24+uT Ru dt

» Require that (4, H) is observable. Intuition: if not, dynamics may not affect
cost = ill-posed. We will study this in more detail when we cover observers
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Applying LQR Control

Trajectory
Generation

Controller Process

~ Estimator

Application #1: trajectory generation
« Solve for (x, y,) that minimize quadratic cost over finite horizon (requires

linear process)

» Use local controller to regulate to desired trajectory

Application #2: trajectory tracking
« Solve LQR problem to stabilize the system to the origin = feedback u = K x

e Can use this for local stabilization of any desired trajectory

« Missing: so far, have assumed we want to keep x small (versus x — x,)
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LQR for trajectory tracking

Goal: design local controller to track x,:

: X e v
Trajectory | 7d Controller Process —— Estimator
Generation

Approach: regulate the error dynamics
o Lete=x-x, v=u-u,and assume f(x, u) = f(x) + g(x) u (simplifies notation)

e=z—129= f(z) + g(x)u — f(zq) + g(zq)uq
= fle+zq) — f(zq) + 9(e + z4) (v + ug) — g(zg)uq
= F(e,v,z4(t),uq(t))
» Now linearize the dynamics around e = 0 and design controllerv=Ke
o Final control law will be u = K (x - x,) + u,

« Note: in general, linearization will depend on x, = u = K(x;,)x < “gain scheduling”
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Choosing LQR weights

Most common case: diagonal weights

q1 1
Q=] - R=p

dn n

» Weight each state/input according to how much it contributes to cost
« Eg: if errorin x, is 10x as bad as error in x,, then ¢, = 10 ¢,

» OK to set some state weights to zero, but all input weights must be >0

« Remember to take units into account: eg for ducted fan if position error is in
meters and pitch error is in radians, weights will have different “units”

Remarks
« LQR will always give a stabilizing controller, but no gauranteed margins
e LQR shifts design problem from loop shaping to weight choices

« Most practical design uses LQR as a first cut, and then tune based on
system performance
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Example: Ducted Fan

Stabilization:

e Given an equilibrium
position (x,, y,) and
equilibrium thrust £, ,
maintain stable hover

o Full state available
for feedback

Tracking:
e Given a reference

trajectory (x,(1), y,(1),
find a feasible trajec-

. . : tory - and a
mZ = f1COS8 — fosin® —cy (0, 1) contiior'd = afx, x,

my = f15in0 + f>cos0 —mg —cq,(0,9) uy) such that x — x,
JO = rfi{ —mglsinf — ca,p(0, 6)

Equations of motion

LQR design: see Igr_dfan.m (available on course web page)
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Variation: Integral Action

A

Trajectory | Xa e 1% .
J . y Controller Process -~ Estimator
Generation

Limitation in LQR control: perfect tracking requires perfect model
« Control law is u = K (x - x,) + u, = u, must be perfect to hold e =0

 Alternative: use integral feedback to give zero steady state error

d |z| _ |Az+ Bu| __ |Axz + Bu
dt lz| | y—r | | Czx—r |« integral of (output) error

« Now design LQR controller for extended system (including integrator weight)
u=K(x—zg) — K;z 4+ uy
L equilibrium value = y = r = 0 steady state error
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Example: Cruise Control

. mo = F — F, Linearized around v:

> F = apuT (anv)

b
1
F; = mgCyr + 5pOUAUQ +mgh, Y=

- —_—

Step 1: augment linearized (error) dynamics with integrator

d || |2 0||v b —g 0
ale) = 13 ol [+ ol [3o P
Step 2: choose LQR weights and compute LQR gains Note: linearized
about v, but try
q1 O L
Q= [O qg] R=p — K= [kl kz] to maintain
speed r (near v,)

Step 3: implement controller
z=v—r

u=ug+ki(v—1r)+kyz -

Pl controller
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Summary: LQR Control

A
— (‘3I' raJectqry Controller Process + Estimator
eneration
. . . . 1 /7 T T
Application #1: trajectory generation J = 5/ (:1: Qr + u Ru) dt
 Solve for (x, y,) that minimize quadratic 0 1
cost over finite horizon 57 (T) Pya(T)
» Use local controller to track trajectory
Application #2: trajectory tracking J = /oo(xTQx + u! Ru) dt
0

» Solve LQR problem to stabilize the system
e Solve algebraic Riccati equation to get state gain
« Can augment to track trajectory; integral action
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