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CDS 110b: Lecture 3-1
Linear Quadratic Regulators

Richard M. Murray
23 January 2008

Goals:
• Derive the linear quadratic regulator and demonstrate its use

Reading:
• RMM course notes (available on web page)
• Lewis and Syrmos, Section 3.3
• Friedland, Chapter 9 (different derivation, but same result)

Homework #3
• Design LQR controllers for some representative systems
• Due Wed, 30 Jan by 5 pm, in box outside 109 Steele
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Review from last lecture

Trajectory Generation via Optimal Control: 

Today: focus on special case of a linear quadratic regulator

Process Controller
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Linear Quadratic Regulator (finite time)

Problem Statement

• Factor of 1/2 simplifies some math below; optimality is not affected

Solution: use the maximum principle

• This is still a two point boundary value problem ⇒ hard to solve
• Note that solution is linear in x (because λ is linear in x, treated as an input)

murray
Text Box
Note: in the notes (and the lecture), we use the notation Q = Q_x and R = Q_u.
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Simplified Form of the Solution

Can simplify solution by guessing that λ = P(t) x(t)

Solution exists if we can find P(t) satisfying

• This equation is called the Riccati ODE; matrix differential equation
• Can solve for P(t) backwards in time and then apply u(t) = -R-1 B P(t) x
• Solving x(t) forward in time gives optimal state (and input): x*(t), u*(t)
• Note that P(t) can be computed once (ahead of time) ⇒ allows us to find the 

optimal trajectory from different points just by re-integrating state equation 
with optimal input

⇓

From maximum
principle

Substitute 
λ = P(t) x(t) 
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Finite Time LQR Summary

Problem: find trajectory that minimizes

Solution: time-varying linear feedback

• Note: this is in feedback form ⇒ can actually eliminate the controller (!)
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Infinite Time LQR

Extend horizon to T = ∞ and eliminate terminal constraint:

Solution: same form, but can show P is constant

Remarks
• In MATLAB, K = lqr(A, B, Q, R)
• Require R > 0 but Q ≥ 0 + must satisfy “observability” condition
• Alternative form: minimize “output” y = H x

• Require that (A, H) is observable.  Intuition: if not, dynamics may not affect 
cost ⇒ ill-posed.  We will study this in more detail when we cover observers

Algebraic Riccati equation

State feedback (constant gain)
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Applying LQR Control

Application #1: trajectory generation
• Solve for (xd, yd) that minimize quadratic cost over finite horizon (requires 

linear process)
• Use local controller to regulate to desired trajectory

Application #2: trajectory tracking
• Solve LQR problem to stabilize the system to the origin ⇒ feedback u = K x
• Can use this for local stabilization of any desired trajectory
• Missing: so far, have assumed we want to keep x small (versus x → xd)
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LQR for trajectory tracking

Goal: design local controller to track xd:

Approach: regulate the error dynamics
• Let e = x - xd, v = u - ud and assume f(x, u) = f(x) + g(x) u (simplifies notation)

• Now linearize the dynamics around e = 0 and design controller v = K e 
• Final control law will be u = K (x - xd) + ud

• Note: in general, linearization will depend on xd ⇒ u = K(xd)x

xd Process Controller
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← “gain scheduling”
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Choosing LQR weights

Most common case: diagonal weights

• Weight each state/input according to how much it contributes to cost
• Eg: if error in x1 is 10x as bad as error in x2, then q1 = 10 q2

• OK to set some state weights to zero, but all input weights must be > 0
• Remember to take units into account: eg for ducted fan if position error is in 

meters and pitch error is in radians, weights will have different “units”

Remarks
• LQR will always give a stabilizing controller, but no gauranteed margins
• LQR shifts design problem from loop shaping to weight choices
• Most practical design uses LQR as a first cut, and then tune based on 

system performance
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Example: Ducted Fan

Equations of motion

LQR design: see lqr_dfan.m (available on course web page)

Stabilization: 
• Given an equilibrium 

position (xd, yd) and 
equilibrium thrust f2d, 
maintain stable hover

• Full state available 
for feedback

Tracking:
• Given a reference 

trajectory (xr(t), yr(t)), 
find a feasible trajec-
tory             and a 
controller u = α(x, xd, 
ud)  such that x → xd
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Variation: Integral Action

Limitation in LQR control: perfect tracking requires perfect model
• Control law is u = K (x - xd) + ud. ⇒ ud must be perfect to hold e = 0 

• Alternative: use integral feedback to give zero steady state error

• Now design LQR controller for extended system (including integrator weight)

xd Process Controller
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integral of (output) error

equilibrium value ⇒ y = r ⇒ 0 steady state error
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Example: Cruise Control

Step 1: augment linearized (error) dynamics with integrator

Step 2: choose LQR weights and compute LQR gains

Step 3: implement controller

Linearized around v0:

PI controller

Note: linearized 
about v0 but try 
to maintain 
speed r (near v0)
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Summary: LQR Control

Application #1: trajectory generation
• Solve for (xd, yd) that minimize quadratic 

cost over finite horizon
• Use local controller to track trajectory

Application #2: trajectory tracking
• Solve LQR problem to stabilize the system
• Solve algebraic Riccati equation to get state gain
• Can augment to track trajectory; integral action
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