CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CDS 110b

R. M. Murray

Lecture 1 – Optimal Control

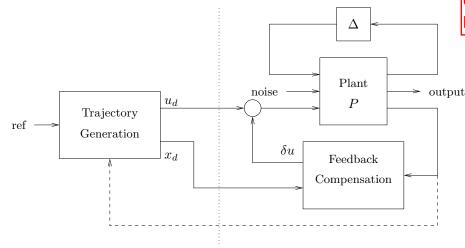
4 January 2006

This lecture provides an overview of optimal control theory. Beginning with a review of optimization, we introduce the notion of Lagrange multipliers and provide a summary of the Pontryagin's maximum principle.

1 Introduction: Optimization-Based Control

Basic idea: two degree of freedom control design:

Skip intro material (already covered) and summarize optimal control problem instead.

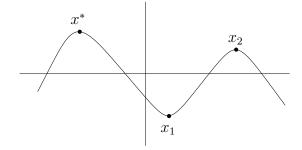


- Compute feasiable trajectory (x_d, u_d) for the system
- Use local controller to track feasible trajectory

Variation (later): update the trajectory based on the current state of the system \implies "receding horizon control".

2 Review: Optimization

Optimization of functions: given $F: \mathbb{R}^n \to \mathbb{R}$, find $x^* \in \mathbb{R}^n$ such that $F(x^*) \geq F(x)$ for all $x \in \mathbb{R}^n$.



Necessary conditions:

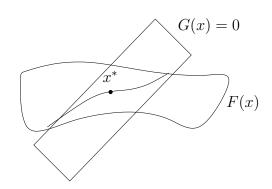
$$\frac{\partial F}{\partial x}(x^*) = 0$$

These are *not* sufficient conditions; the points x_1 and x_2 and x^* all satisfy the necessary condition but only one is the (global) maximum.

Optimization with *constraints*: given $F: \mathbb{R}^n \to \mathbb{R}$ and $G_i: \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., k, find $x^* \in \mathbb{R}^n$ such that $G_i(x^*) = 0$ (satisfies constraints) and

$$F(x^*) \ge F(x)$$

for all x such that $G_i(x) = 0$.



Necessary conditions: $\exists \lambda_i, i = 1, ..., k$ such that

$$\frac{\partial F}{\partial x}(x^*) + \sum_{i=1}^k \lambda_i \frac{\partial G_i}{\partial x}(x^*) = 0$$

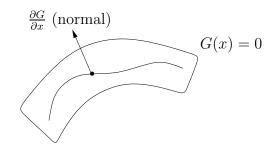
or define
$$\widetilde{F} = F + \sum \lambda_i G_i \implies$$

$$\frac{\partial \widetilde{F}}{\partial x}(x^*) = 0$$

The scalars λ_i are called Lagrange multipliers.

Intuition on Lagrange multiplers

View #1 (geometric):



In the expression

$$\frac{\partial F}{\partial x} + \lambda^T \frac{\partial G}{\partial x} = 0$$

the term $\frac{\partial F}{\partial x}$ is the usual (gradient) optimality condition while the term $\frac{\partial G}{\partial x}$ is used to "cancel" the gradient in the directions normal to the constraint.

View #2 (algebraic): In the expression

$$\min_{x} F(x) + \lambda^{T} G(x)$$

the variables λ can be regarded as free variables \implies need to choose x such that G(x) = 0. Otherwise, we can choose λ to generate a large cost.

Remarks:

1. We will often switch back and forth betweeen max and min:

$$\max_{x} F(x) = \min_{x} \left(-F(x) \right)$$

2. Very good software is available for solving optimization problems numerically: NPSOL, SNOPT, fmin (in MATLAB).

Add example: $F(x) = (x1-a)^2 + (x2-b)^2$ G(x) = x1 - x2

3 Optimal Control of Systems

Consider now the optimal control problem:

$$\min_{u} \underbrace{\int_{0}^{T} L(x, u) dt}_{\text{integrated cost}} + \underbrace{V(x(T), u(T))}_{\text{final cost}}$$

subject to the constraint

$$\dot{x} = f(x, u)$$
 $x \in \mathbb{R}^n, u \in \mathbb{R}^m$

This problem is equivalent to the "standard" problem of minimizing a cost function J(z) where $z \in L_2[0,T]$ and h(z) = 0 models the dynamics.

Basic idea: optimize over curves x(t), u(t) that satisfy the constraint $\dot{x}(t) - f(x(t), u(t)) = 0$.

Remarks

1. A special case is *linear quadratic* optimizal control:

$$\dot{x} = Ax + Bu$$
 $J = \frac{1}{2} \int_0^T \left(x^T Q x + u^T R u \right) dt + x^T (T) P_1 x(T)$
 $Q \ge 0$ penalizes state error (assumes $x_d = 0$)
 $R > 0$ penalizes input (must be positive definite)
 $P_1 > 0$ penalizes terminal state

- 2. Variation: let $T = \infty$, $V = 0 \implies$ "infinite horizon" problem
- 3. Use of optimal control does not require linear systems or quadratic cost. *Very* general results are available.

Maximum Principle (Pontryagin, 1960s)

System: nonlinear ODE

$$\dot{x} = f(x, u)$$
 $x = \mathbb{R}^n$
 $x(0)$ given $u \in \Omega \subset \mathbb{R}^p$

where $f(x, u) = (f_1(x, u), \dots f_n(x, u)) : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$.

Cost: integral + terminal cost and constraint

$$J = \int_0^T L(x, u) dt + V(x(T))$$

$$\psi(x(T)) = 0 \quad \leftarrow \text{terminal constraint}$$

Hamiltonian:

$$H = L + \lambda^T f = L + \sum \lambda_i f_i$$

Theorem 1. If (x^*, u^*) is optimal, then $\exists \ \lambda^*(t)$ and ν^* such that

$$\dot{x}_{i} = \frac{\partial H}{\partial \lambda_{i}} \qquad -\dot{\lambda}_{i} = \frac{\partial H}{\partial x_{i}} \qquad \underbrace{\begin{array}{c} x(0) \ given, \ \psi(x(T)) = 0 \\ \lambda(T) = \frac{\partial V}{\partial x} \left(x(T)\right) + \frac{\partial \psi^{T}}{\partial x} \nu \end{array}}_{\text{Boundary conditions (2n total)}$$

and

$$H(x^*(t), u^*(t), \lambda^*(t)) \le H(x^*(t), u, \lambda^*(t)) \quad \forall \quad u \in \Omega$$

Remarks

- 1. Note that even though we are *minimizing* the cost, this is still usually called the maximum principle (artifact of history).
- 2. This is a *very* general (and elegant) theorem. Generalizes optimization to optimal control.
- 3. If $u = \operatorname{argmin} H(x, u, \lambda)$ exists, we can use this to *choose* control law u
- 4. If $\Omega = \mathbb{R}^m$ (unconstrained input) and H is differentiable, then a necessary condition is

$$\frac{\partial H}{\partial u} = 0$$

5. Proof: Lewis and Syrmos [1]