
Appendix B

Decentralised Data Fusion

B.1 The Information Filter

A key tool in decentralised data fusion systems is the information filter. The information

filter allows standard continuous estimation and control functions to be decentralised.

The information filter is summarised in this section.

Consider a system described in standard linear form

x(k) = F(k)x(k − 1) + B(k)u(k) + G(k)w(k), (B.1)

where x(j) is the state of interest at time j, F(k) is the state transition matrix from time

k − 1 to k, B(k) and G(k) the control input and noise input transition matrices, and

where u(k) and w(k) are the associated control input and process noise input modeled as

an uncorrelated white sequence with E{w(i)wT (j)} = δijQ(i). The system is observed

by a sensor according to the linear equation

z(k) = H(k)x(k) + v(k) (B.2)

where z(k) is the vector of observations made at time k, H(k) the observation matrix or
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model, and where v(k) is the associated observation noise modeled as an uncorrelated

white sequence with E{v(i)vT (j)} = δijR(i).

The conventional Kalman filter algorithm generates estimates for the state x̂(k | k)

at a time k given all observations up to time k, together with a corresponding estimate

covariance P(k | k) as:

x̂(k | k) = x̂(k | k − 1) + W(k) [z(k) + H(k)x̂(k | k − 1)] (B.3)

P(k | k) = P(k | k − 1) − W(k)S(k)WT (k) (B.4)

where W(k) is the gain matrix, S(k) the innovation covariance. The information form of

the Kalman filter is obtained by re-writing the state estimate and covariance in terms of

two new variables

ŷ(i | j)
!
= P−1(i | j)x̂(i | j), Y(i | j)

!
= P−1(i | j), (B.5)

and also the information associated with an observation in the form

i(k)
!
= HT (k)R−1(k)z(k), I(k)

!
= HT (k)R−1(k)H(k) (B.6)

With these definitions, the information filter can be summarised

Prediction:

ŷ(k | k − 1) =
[
1 − Ω(k)GT (k)

]
F−T (k)ŷ(k − 1 | k − 1) +

+Y(k | k − 1)B(k)u(k) (B.7)

Y(k | k − 1) = M(k) − Ω(k)Σ(k)ΩT (k) (B.8)
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where

M(k) = F−T (k)P−1(k − 1 | k − 1)F−1(k), (B.9)

Ω(k) = M(k)G(k)Σ−1(k), (B.10)

and

Σ(k) =
[
GT (k)M(k)G(k) + Q−1(k)

]
. (B.11)

Estimate:

ŷ(k | k) = ŷ(k | k − 1) + i(k) (B.12)

Y(k | k) = Y(k | k − 1) + I(k). (B.13)

The information-filter form has the advantage that the update Equations B.12 and B.13

for the estimator are computationally simpler than the equations for the Kalman Filter, at

the cost of increased complexity in prediction. The value of this in decentralized sensing is

that estimation occurs locally at each node, requiring partition of the estimation equations

which are simpler in their information form. Prediction, which is more complex in this

form, relies on a propagation coefficient which is independent of the observations made

and so is again simpler to decouple and decentralize amongst a network of sensor nodes.

The information form of the Kalman filter, while widely known, is not commonly used

because the update terms are of dimension the state, whereas in the distributed Kalman

filter updates are of dimension the observation. For single sensor estimation problems, this

argues for the use of the Kalman filter over the information filter. However, in multiple

sensor problems, the opposite is true. The reason is that with multiple sensor observations

zi(k) = Hi(k)x(k) + vi(k), i = 1, · · · , N

the estimate can not be constructed from a simple linear combination of contributions
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from individual sensors

x̂(k | k) "= x̂(k | k − 1) +
N∑

i=1

Wi(k) [zi(k) − Hi(k)x̂(k | k − 1)] ,

as the innovation zi(k) − Hi(k)x̂(k | k − 1) generated from each sensor is correlated be-

cause they share common information through the prediction x̂(k | k − 1). However, in

information form, estimates can be constructed from linear combinations of observation

information

ŷ(k | k) = ŷ(k | k − 1) +
N∑

i=1

ii(k),

as the information terms ii(k) from each sensor are uncorrelated. Once the update equa-

tions have been written in this simple additive form, it is straight-forward to distribute

the data fusion problem (unlike for a Kalman filter); each sensor node simply generates

the information terms ii(k), and these are summed at the fusion center to produce a global

information estimate.
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Figure B.1: Algorithmic structure of a decentralised sensing node.

To decentralise the information filter all that is necessary is to replicate the central

fusion algorithm (summation) at each sensor node and simplify the result. This yields

a surprisingly simple nodal fusion algorithm. The algorithm is described graphically in

Figure B.1. Essentially, local estimates are first generated at each node by fusing (adding)

locally available observation information ii(k) with locally available prior information

ŷi(k | k − 1). This yields a local information estimate ỹi(k | k). The difference between
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this local estimate and prediction (corresponding to new information gained) is then

transmitted to other nodes in the network. In a fully connected or broadcast network,

this results in every sensing node getting all new information. Communicated information

is then assimilated simply by summing with the local information. An important point

to note is that, after this, the locally available estimates are exactly the same as if the

data fusion problem had been solved on a single central processor using a monolithic

formulation of the conventional Kalman filter.

It is also worth noting the manner in which the control input enters the prediction

stage of the information form; through the term Y(k | k − 1)B(k)u(k). In general Hi(k)

is a function of state which is dependent on control action. Thus, the control input also

influences the observed information update.


