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This set of lectures provides a brief introduction to Kalman filtering, following the

treatment in Friedland.

Reading:

• Friedland, Chapter 11

1 Kalman Filters in Discrete Time

One of the principal uses of observers in practice is to estimate the state of a system in the
presence of noisy measurements. We have not yet treated noise in our analysis and a full
treatment of stochastic dynamical systems is beyond the scope of this text. In this section,
we present a brief introduction to the use of stochastic systems analysis for constructing
observers. We work primarily in discrete time to avoid some of the complications associ-
ated with continuous time random processes and to keep the mathematical pre-requisites
to a minimum. This section assumes basic knowledge of random variables and stochastic
processes.

Consider a discrete time, linear system with dynamics

x[k + 1] = Ax[k] + Bu[k] + Fv[k]

y[k] = Cx[k] + w[k],
(1)

where v[k] and w[k] are Gaussian, white noise processes satisfying

E{v[k]} = 0 E{w[k]} = 0

E{v[k]v[j]T} =

{

0 k 6= j

Rv k = j
E{w[k]w[j]T} =

{

0 k 6= j

Rw k = j

E{v[k]w[j]T} = 0.

(2)

We assume that the initial condition is also modeled as a Gaussian random variable with

E{x0} = x0 E{x0x
T
0
} = P0. (3)



We wish to find an estimate x̂[k] that minimizes the mean square error E{(x[k]− x̂[k])(x[k]−
x̂[k])T} given the measurements {y(δ) : 0 ≤ τ ≤ t}. We consider an observer in the same
basic form as derived previously:

x̂[k + 1] = Ax̂[k] + Bu[k] + L[k](y[k] − Cx̂[k]). (4)

The following theorem summarizes the main result.
Theorem 1. Consider a random process x[k] with dynamics (1) and noise processes and
initial conditions described by equations (2) and (3). The observer gain L that minimizes
the mean square error is given by

L[k] = AT P [k]CT (Rw + CP [k]CT )−1,

where
P [k + 1] = (A − LC)P [k](A − LC)T + Rv + LRwLT

P0 = E{X(0)XT (0)}.
(5)

Before we prove this result, we reflect on its form and function. First, note that the Kalman
filter has the form of a recursive filter: given P [k] = E{E[k]E[k]T} at time k, can compute
how the estimate and covariance change. Thus we do not need to keep track of old values
of the output. Furthermore, the Kalman filter gives the estimate x̂[k] and the covariance
P [k], so we can see how reliable the estimate is. It can also be shown that the Kalman
filter extracts the maximum possible information about output data. If we form the residual
between the measured output and the estimated output,

e[k] = y[k] − Cx̂[k],

we can can show that for the Kalman filter the correlation matrix is

Re(j, k) = Wδjk.

In other words, the error is a white noise process, so there is no remaining dynamic infor-
mation content in the error.

In the special case when the noise is stationary (Rv, Rw constant) and if P [k] converges,
then the observer gain is constant:

K = AT PCT (Rw + CPCT ),

where
P = APAT + Rv − APCT

(

Rw + CPCT
)

−1

CPAT .

We see that the optimal gain depends on both the process noise and the measurement
noise, but in a nontrivial way. Like the use of LQR to choose state feedback gains, the
Kalman filter permits a systematic derivation of the observer gains given a description of
the noise processes. The solution for the constant gain case is solved by the dlqe command
in MATLAB.
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Proof (of theorem). We wish to minimize the mean square of the error, E{(x[k]−x̂[k])(x[k]−
x̂[k])T}. We will define this quantity as P [k] and then show that it satisfies the recursion
given in equation (5). By definition,

P [k + 1] = E{x[k + 1]x[k + 1]T}

= (A − LC)P [k](A − LC)T + Rv + LRwLT

= AP [k]AT − AP [k]CT LT − LCAT + L(Rw + CP [k]CT )LT .

Letting Rǫ = (Rw + CP [k]CT ), we have

P [k + 1] = AP [k]AT − AP [k]CT LT − LCAT + LRǫL
T

= AP [k]AT +
(

L − AP [k]CT R−1

ǫ

)

Rǫ

(

L − AP [k]CT R−1

ǫ

)T

− AP [k]CT R−1

ǫ CP [k]T AT + Rw.

In order to minimize this expression, we choose L = AP [k]CT R−1

ǫ and the theorem is
proven.

2 Predictor-Corrector Form

The Kalman filter can be written in a two step form by separating the correction step (where
we make use of new measurements of the output) and the prediction step (where we compute
the expected state and covariance at the next time instant).

We make use of the notation x̂[k|j] to represent the estimated state at time instant k given
the information up to time j (where typically j = k − 1). Using this notation, the filter can
be solved using the following algorithm:

Step 0: Initialization

k = 0

x̂[0|−1] = E{x[0]}

P [0|−1] = E{xT [0]x[0]}

Step 1: Correction

x̂[k|k] = x̂[k|k − 1] + L[k](y[k] − Cx̂[k|k − 1])

P [k|k] = P [k|k − 1] − P [k|k − 1]CT (CP [k|k − 1]CT + Rw[k])−1CP [k|k − 1]

Step 2: Prediction

x̂[k + 1|k] = Ax̂[k|k] + Bu[k]

P [k + 1|k] = AP [k|k]AT + FRv[k]F T
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Step 3: Interate Set k to k + 1 and repeat steps 1 and 2.

Note that the correction step reduces the covariance by an amount related to the relative
accuracy of the measurement, while the prediction step increases the covariance by an amount
related to the process disturbance.

This form of the discrete-time Kalman filter is convenient because we can reason about
the estimate in the case when we do not obtain a measurement on every interation of the
algorithm. In this case, we simply update the prediction step (increasing the covariance)
until we receive new sensor data, at which point we call the correction step (decreasing the
covariance).

3 Sensor Fusion

4 Information Filters
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