

CDS 110b: Lecture 9-1 Robust Stability

Richard M. Murray 28 February 2007

Goals:

- Describe methods for representing unmodeled dynamics
- · Derive conditions for robust stability

Reading:

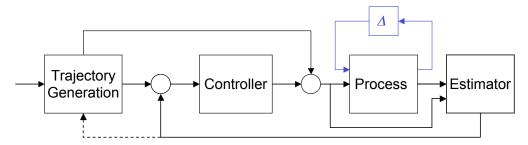
- AM06, Section 9.5, 12.1, 12.2 (norms + robust stability)
- Advanced: Doyle, Francis and Tannenbaum, Sections 4.1-4.3

28 Feb 06

R. M. Murray, Caltech

1

Game Plan: Robust Performance



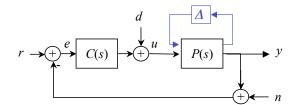
Robust Control

- Stability: bounded inputs → bounded outputs
- Performance: keep errors small

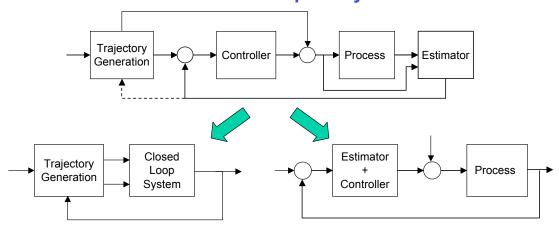
Robustness: do these things for all $\|\Delta\|_{\infty} < 1$

Simplifying case: focus on basic control loop (inner or outer loop)

- Stability = "internal stability"
- Performance = bounds on S & T
- Robustness = small gain theorem



Inner/Outer Loop Analysis



Outer loop: assume tracking is fast

- · Replace tracking controller with closed loop dynamics
- · Assumes tracking is much faster than trajectory generation
- Remaining uncertainty from system objective (ref) + environmental change

Inner loop: assume reference is slow

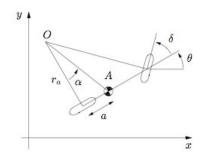
- Treat reference as constant input
- · Design controller to provide sufficient bandwidth, tracking, disturbance rej.
- Reduces to standard (CDS 110a) control design; bandwidth requirements based on outer loop

28 Feb 06

R. M. Murray, Caltech

3

Motivating Example: Vehicle Steering (AM06)



$$\dot{\xi} = v \cos(\alpha + \theta)$$

$$\dot{\eta} = v \sin(\alpha + \theta)$$

$$\dot{\theta} = v_0 \cos \delta$$

$$\begin{split} \dot{\xi} &= v \cos{(\alpha + \theta)} \\ \dot{\eta} &= v \sin{(\alpha + \theta)} \\ \dot{\theta} &= \frac{v_0}{b} \tan{\delta}, \end{split} \qquad \qquad \begin{split} \frac{dw}{d\tau} &= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} w + \begin{bmatrix} \alpha \\ 1 \end{bmatrix} u \\ y &= \begin{bmatrix} 1 & 0 \end{bmatrix} w \end{split}$$

- · Control the lateral dynamics to follow trajectory
- · Normalize dynamics to simply functional form (AM06)

Control design

$$u = -k_1 w_1 - k_2 w_2 + k_r r,$$

· Choose gains so that closed loop dynamics have characteristic polynomial

$$p(s) = s^2 + 2\zeta_c\omega_c s + \omega_c^2.$$

$$\omega_c = 1, \ \zeta_c = 0.707$$

$$\downarrow \qquad \qquad \qquad \downarrow$$
 $k_1 = 100 \ \text{and} \ k_2 = -35.86$

Estimator design

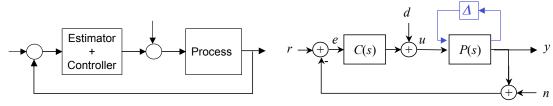
$$\frac{d\hat{w}}{dt} = A\hat{w} + Bu + L(y - C\hat{w})$$

· Choose estimator gains to give closed loop observer with characteristic poly

$$q(s) = s^2 + 2\zeta_o\omega_o s + \omega_o^2,$$

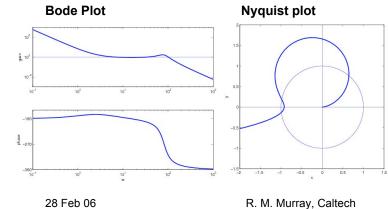
 $\omega_o = 20$ and $\zeta_o = 2$
 $\downarrow \downarrow$
 $l_1 = 28.28$ and $l_2 = 400$

Closed Loop Steering Dynamics



Process and controller dynamics

$$P(s) = \frac{0.5s + 1}{s^2}. \qquad C(s) = \frac{-11516s + 40000}{s^2 + 42.4s + 6657.9}$$



Closed loop not robust!

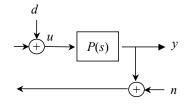
- No net encirclements, but phase margin is very small (around 7 deg)
- Small change in process dynamics will cause system to go unstable
- Not clear from design what went wrong - closed loop dynamics look reasonable
- Problem is not limited to eigenvalue placement (HW: show for LQR + KF)

5

Modeling Uncertainty

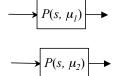
Noise and disturbances

- Model the amount of noise by its signal strength in different frequency bands
- Can model signal strength by peak amplitude, average energy, and other norms
- Typical example: Dryden gust models (filtered white noise)



Parametric uncertainty

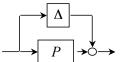
- Unknown parameters or parameters that vary between plants
- Typically specified as tolerances on the nominal parameters



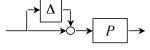
Unmodeled dynamics

- High frequency dynamics can be excited by control loops
- Use bounded operators to account for unmodeled dynamics:

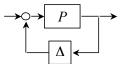
Additive uncertainty



Multiplicative uncertainty

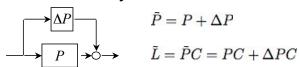


Feedback uncertainty



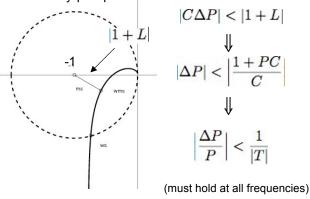
Robust Stability via Nyquist

Additive uncertainty case



How much ΔP can we tolerate?

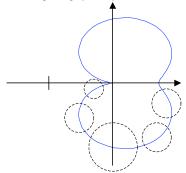
 Look at distance from the critical point on the Nyquist plot



28 Feb 06

R. M. Murray, Caltech

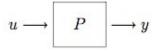
"Fuzzy" Nyquist plot



- Can handle any uncertainty within "tube" around nominal process (no new encirc'ts)
- Caution: requires perturbations to be stable
- Conservative condition: allows any variation w/in tube; reality may be more kind

7

System Norms



$$y(t) = \underbrace{Ce^{At}x(0)}_{\text{Assume zero}} + \underbrace{\int_0^t Ce^{A(t-\tau)}Bu(\tau)\,d\tau}_{\text{Linear map}}$$

What is the "gain" from u to y?

- Would like a single number, not something dependent on frequency
- Answer depends on what you choose as the norms for the input and ouptuts

2-norm of a signal

 Define like the two norm of a vector (but with integral instead of a sum):

$$\|u\|_2 = \left(\int_{-\infty}^\infty u^2(t)dt
ight)^{1/2}$$

- Corresponds to the "energy" contained in a signal
- · Caution: not defined for sinusoids (!)

Induced norm of a system

 Look at maximum norm of the output given all possible unit-norm inputs

 Common choice for control purposes is the "induced 2-norm"

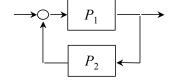
$$||H||_{\infty} = \sup_{\omega} |H(i\omega)|.$$

also called the "infinity norm" (of a transfer function)

28 Feb 06

Small Gain Theorem

Theorem (Small gain theorem) Consider two stable, linear time invariant processes with transfer functions $P_1(s)$ and $P_2(s)$. The feedback interconnection of these two systems is stable if $||P_1P_2||_{\infty} < 1$.



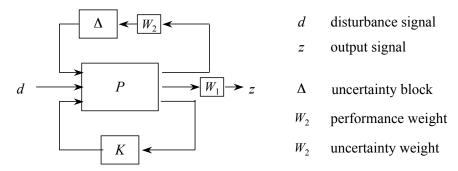
Application to robust stability

• Use block diagram algebra to convert system into form of small gain theorem



28 Feb 06 R. M. Murray, Caltech 9

Preview: Robust Performance

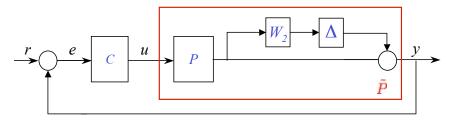


Goal: guaranteed performance in presence of uncertainty

$$||z||_2 \le \gamma ||d||_2$$
 for all $||\Delta|| \le 1$

- · Compare energy in disturbances to energy in outputs
- Use frequency weights to change performance/uncertainty descriptions
- "Can I get X level of performance even with Y level of uncertainty?"

Robust Stability Using Frequency Domain Weighting



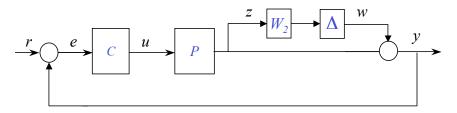
Multiplicative Uncertainty

• Model plant as nominal with additional dynamics given by $W_2 \Delta$

$$\tilde{P} = P(1 + W_2 \Delta) \qquad W_2 = \text{frequency weight} \\ \Delta = \text{uncertainty; require } |\Delta(jw)| \leq 1$$

$$|W_2| \qquad \bullet \qquad \Delta \text{ allows } \textit{any} \text{ dynamics to be inserted into the plant} \\ \bullet \text{ Can be used to model parameter uncertainty or unmodeled dynamics}}$$
28 Feb 06
$$\text{R. M. Murray, Caltech} \qquad 11$$

Complementary Sensitivity and Robustness



Thm A controller C provides robust stability to multiplicative perturbations if and only if

$$|W_2(j\omega)| < 1 \quad \text{for all } \omega.$$

$$Where \\ \text{Complementary} \\ \text{sensitivity} \\ \text{function}$$

$$T := \frac{PC}{1 + PC} = H_{zw}$$

$$\text{Intuition: } H_{zw} \text{ represents the transfer function seen by the weighted uncertainty } W_2 \Delta$$

Note: this theorem guarantees stability for any *transfer function* $\Delta(s)$ satisfying $|\Delta(j\omega)| < 1 \Rightarrow$ allows unmodeled *dynamics* (as well as parametric uncertainty)

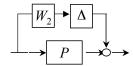
28 Feb 06 R. M. Murray, Caltech 12

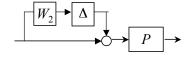
Models for Uncertainty

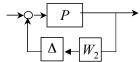
Additive uncertainty

Multiplicative uncertainty

Feedback uncertainty







Each model describes a class of process dynamics:

• Additive:

$$\tilde{P} = P + W_2 \Delta$$

Multiplicative:

$$\tilde{P} = P(1 + W_2 \Delta)$$

• Feedback: $\tilde{P} = P/(1 + PW_2\Delta)$

Use $||W_2||$ to shape the unmodeled dynamics; $||\Delta||_{\infty} < 1$ in all cases

Robust stability conditions given by small gain theorem

- Compute transfer function around Δ block and require that this be < 1
- (If not, can choose Δ with $||\Delta||_{\infty} \le 1$ to destabilize)

28 Feb 06

R. M. Murray, Caltech

13

Example: Robust Cruise Control

