

CDS 110b: Lecture 8-1 Receding Horizon Control

Richard M. Murray 21 February 2007

Goals:

- Introduce receding horizon control (RHC) for constrained systems
- · Describe how to use "differential flatness" to implement RHC
- · Give examples of implementation on the Caltech ducted fan, satellites, etc

Reading:

• Notes: "Online Control Customization via Optimization-Based Control"

Stability of Receding Horizon Control RHC can destabilize systems if not done properly • For properly chosen cost functions, get stability with T sufficiently large · For shorter horizons, counter examples show that stability is trickier Thm (Jadbabaie & Hauser, 2002). Suppose that the terminal cost V(x) is a control Lyapunov function such that $\min_{u} (\dot{V} + L)(x, u) < 0$ for each $x \in \Omega_r = \{x: V(x) < r^2\}$, for some r > 0. Then, for every T > 0 and $\Delta T \in (0; T]$, the resulting receding horizon trajectories go to zero exponentially fast. Remarks Earlier approach used terminal trajectory constraints; hard to implement in realtime · CLF terminal cost is difficult to find in general, but LQR-based solution at equilibrium point often works well - choose $V = x^T P x$ where P = Riccati soln4

Optimal Control Using Differential FlatnessCan also solve constrained optimization problem via flatness $\min J = \int_{t_0}^{T} L(x, u) dt + V(x(T), u(T))$ subject to $\dot{x} = f(x, u)$ $g(x, u) \leq 0$ (Input constraintsState constraintsIf system is flat, once again we get an algebraic problem: $x = x(z, \dot{z}, \dots, z^{(q)})$ $u = u(z, \dot{z}, \dots, z^{(q)})$ $u = u(z, \dot{z}, \dots, z^{(q)})$ $z = \sum \alpha_i \psi^i(t)$ \Rightarrow Constraints hold at all times \Rightarrow potentially over-constrained optimization problem \cdot Numerically solve by discretizing time (collocation)

Caltech Ducted Fan

- Ducted fan engine with vectored thrust
- Airfoil to provide lift in forward flight mode
- Design to emulate longitudinal flight dynamics
- Control via dSPacebased real-time controller

Trajectory Generation Task: point to point motion avoiding obstacles

- · Use differential flatness to represent trajectories satisfying dynamics
- Use B-splines to parameterize trajectories
- · Solve constrained optimization to avoid obstacles, satisfy thrust limits

Satellite Formation Results	
 Station-keeping optimization Maintain a given area between the satellites (for good imaging) while minimizing the amount of fuel Idea: exploit natural dynamics of orbital equations as much as possible 	
• Input constraints: $\Delta V < 20$ m/s/year Results	
 Use NTG to optimize over 60 orbits (~3 days), then repeat Results: at 45[±] inclination, obtain 10.4 m/s/year 	⁵⁰⁰ Projected area of ⁴⁰⁰ satellites
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{100} = \frac{1}{100} = \frac{1}{10} = \frac{1}{10} = \frac{1}{10} = \frac{1}{100} = \frac{1}{10$
21 Feb 07 R. M. Mur	rray, Caltech 20

