
CDS 110b: Lecture 8-1
Receding Horizon Control

Richard M. Murray

21 February 2007

Goals:

• Introduce receding horizon control (RHC) for constrained systems

• Describe how to use “differential flatness” to implement RHC

• Give examples of implementation on the Caltech ducted fan, satellites, etc

Reading:

• Notes: “Online Control Customization via Optimization-Based Control”
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Control Architecture: Two DOF Design

• Use nonlinear trajectory generation to construct (optimal) feasible trajectories

• Use local control to handle uncertainty and small scale (fast) disturbances

• Receding horizon control: iterate trajectory generation during operation
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Solve finite time optimization over T seconds and implement first !T seconds

Requires that computation time be small relative to time horizons

• Initial implementation in process control, where time scales are fairly slow

• Real-time trajectory generation enables implementation on faster systems
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Stability of Receding Horizon Control

RHC can destabilize systems if not done properly

• For properly chosen cost functions, get stability with T sufficiently large

• For shorter horizons, counter examples show that stability is trickier

Thm (Jadbabaie & Hauser, 2002). Suppose that the terminal cost V(x) is a control 
Lyapunov function such that

for each x ∈ "r = {x: V(x) < r2}, for some r > 0. Then, for every T > 0 and !T ∈ (0; T], 

the resulting receding horizon trajectories go to zero exponentially fast.

Remarks

• Earlier approach used terminal trajectory constraints; hard to implement in real-
time

• CLF terminal cost is difficult to find in general, but LQR-based solution at 
equilibrium point often works well - choose V = xT P x where P = Riccati soln
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RHC Design: Choice of Cost Function

Q: How do we choose RHC cost to get desired performance

• RHC deals w/ constraints, but shifts design freedom into choice of weights

Thm (Kalman, 1964)  Given any state feedback law u = -Kx, there exists a cost 
function such that the optimal controller for that cost generates the given feedback 
law

• Theorem can be used to show that finite time horizon cost function also exists

• Basic idea: solve the algebraic Riccati equation for P, Q, R given K

• Kalman showed you can always find positive definite solution to these eqns

• “Extension” to finite horizon problem: set PT = P and use

  

21 Feb 07 R. M. Murray, Caltech 6

RHC Design Philosophy

Remarks

• Can extend linear state space results to NL systems with CLF-based control

• General theory of dynamic compensators (eg, loopshaping) still open

• Challenge: must be able to generate (optimal) trajectories fast…

Use linear design as specification 

for RHC-based control

• Linearize system around 

representative operation point

• Design controller using linear tools 

(H1, loopshaping, etc)

• Compute finite horizon cost 

function with terminal constraint 

that yields controller

• Plug in to RHC computation to 

handle nonlinearities, constraints

Receding
Horizon
Control
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Trajectory Generation Using Differential Flatness

• Use basis functions to parameterize output # linear problem in terms of coefficients

Complicated (algebraic) constraints

z
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Optimal Control Using Differential Flatness

Can also solve constrained optimization problem via flatness

subject to

If system is flat, once again we get an algebraic problem:

• Constraints hold at all times # potentially over-constrained optimization

• Numerically solve by discretizing time (collocation)

• Input constraints

• State constraints

Finite parameter optimization problem

#
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collocation point

collocation point

Trajectory Generation Using Splines for Flat Outputs

Rewrite flat outputs in terms of splines

Evaluate constrained optimization at collocation points:

Bi,kj  = basis functions

  Ci
j  = coefficients

   zi  = flat outputs
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Application: Caltech Ducted Fan

Flight Dynamics

RHC Implementation

• System is approximately flat, even with

aerodynamic forces

• More efficient to over-parameterize the

outputs; use z = (x, y, $)

• Input constraints: max thrust, flap limits,

flap rates

C
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Implementation using NTG Software Library 

Features

• Handles constraints

• Very fast (real-time), 
especially from warm start

• Good convergence

Weaknesses

• No convergence proofs

• Misses constraints 
between collocation points

• Doesn’t exploit mechanical 
structure (except through 
flatness)

Planar Ducted Fan: Warm Starts

Milam, Mushambi, M

2000 CDC

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html
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Example: Trajectory Generation for the Ducted Fan

Trajectory Generation Task: point to point motion avoiding obstacles

• Use differential flatness to represent trajectories satisfying dynamics

• Use B-splines to parameterize trajectories

• Solve constrained optimization to avoid obstacles, satisfy thrust limits

Caltech Ducted Fan

• Ducted fan engine 
with vectored thrust

• Airfoil to provide lift in 
forward flight mode

• Design to emulate 
longitudinal flight 
dynamics

• Control via dSPace-
based real-time 
controller
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From Real-Time Trajectory Generation to RHC

Three key elements for making RHC fast enough for motion control applications

• Fast computation to optimize over many variables quickly

• Differential flatness to minimize the number of dynamic constraints

• Optimized algorithms including B splines, colocation, and SQP solvers

Use of feedback allows substantial approximation

• OK to approximate computations since result will be recomputed using actual state

• NTG exploits this principle through the use of collocation

Can further optimize to take into account finite computation times

Tuning tricks

• Compute predicted 

state to account for 

computation times

• Optimize 

collocation times 

and optimization 

horizon

• Choose sufficiently 

smooth spline basis
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Experiments: Caltech Ducted Fan

Real-Time RHC on Caltech Ducted Fan (Aug 01)

• NTG with quasi-flat outputs + Lyapunov CLF

• Average computation time of  ~100 msec

• Inner (pitch) loop closed using local control law; RHC for 
position variables

• Inner/outer tradeoff: how much can be pushed into optimization

Milam, Franz, Hauser, 2002 ACC
Dunbar, Milam, Murray, 2002 IFAC
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 Highly Aggressive Constrained Turnaround

• Goal: -5 to 5 m/s. Final x position 
arbitrary, z within state constraint, 
Thrust vectoring within constraints

• Initial guess: Random

• Computation Time: 1.12 sec Sparc 
Ultra 10 83.3% CPU usage

• 6th order B-splines, seven intervals 
for each output, 30 equally spaced 
collocation points

• Full aerodynamic model
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Example: Flight Control

dSPACE-based control system

• Two C30 DSPs + two 500 MHz DEC/Compaq/HP Alpha processors

• Effective servo rates of 20 Hz (guidance loop)

Franz, Milam et al

ACC 2002
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Trajectory Generation for Non-Flat Systems

If system is not fully flat, can still apply NTG

When system is not flat, use quasi-collocation

• Choose output y=h(x,u) that can be used to compute the full state and input

• Remaining dynamics are treated as constraints for trajectory generation

• Example: chain of integrators

Can also do full collocation (treat all dynamics as constraints)

Each equation gives constraints at collocation 
points # highly constrained optimization

+

Solve using 
NTG with 

lb = ub

21 Feb 07 R. M. Murray, Caltech 18

Effect of Defect on Computation Time

Defect as a measure of flatness

• Defect = number of remaining 

differential equations

• Defect 0 # differentially flat

Sample problem: 5 states, 1 input

• x1 is possible flat output

• Can choose other outputs to get 

systems with nonzero defect

• 200 runs per case, with random 

initial guess

Computation time related to defect 

through power law

• SQP scales cublicly # minimize the 

number of free variables
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Petit, Milam, Murray

NOLCOS, 2001
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Example 2: Satellite Formation Control

Goal: reconfigure cluster of satellites using minimum fuel

Dynamics given by Hill’s equations (fully actuated # flat)

Milam, Petit, Murray

AIAA GNC, 2001
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Satellite Formation Results

Station-keeping optimization

• Maintain a given area between the 
satellites (for good imaging) while 
minimizing the amount of fuel

• Idea: exploit natural dynamics of 
orbital equations as much as 
possible

• Input constraints: !V < 20 m/s/year

Results

• Use NTG to optimize over 60 orbits 
(~3 days), then repeat

• Results: at 45± inclination, obtain 
10.4 m/s/year

Projected area of
satellites

100 m2
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Example 3: MVWT Control Design

Control design technique

1. LQR design of state space controller K 
around reference velocity

2. Choose P, Q, R using Kalman’s formula

3. Implement as a receding horizon control with 
input and state space constraints

• RHC controller respects state space constraint

     LQR control law     

     RHC control law     

Initial condition

Constraint (post)

Reference
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Summary: Optimization-Based Control 

Receding horizon control (RHC) for constrained systems

• Allows nonlinear dynamics + input and state constraints

• Need to be careful with terminal conditions to insure stability

Differential flatness is an enabler for practical implementation of RHC

• Allows fast computation of (optimal) trajectories

• NTG can be used to implement RHC; works for (slightly) non-flat systems

Caltech ducted fan implementation illustrates applicability of results

• Real-time control on representative flight control platform with no inner loop

• Extensions to multi-vehicle testbed are being implemented

time

state
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