CDS 110b: Lecture 8-1
Receding Horizon Control

Richard M. Murray
21 February 2007

Goals:
« Introduce receding horizon control (RHC) for constrained systems
» Describe how to use “differential flatness” to implement RHC
« Give examples of implementation on the Caltech ducted fan, satellites, etc

Reading:
* Notes: “Online Control Customization via Optimization-Based Control”

Murray, Hauser et al
SEC chapter (IEEE, 2002)

Control Architecture: Two DOF Design

Nonlinear design Local design
* global nonlinearities
. . . A
Input saturation [
* state space constraints
2%} noise—| Plant output
ref Trajectory P
Generation
Xa
du
Local
Control
“RE[C” |
Optimal Control LQR/PID

« Use nonlinear trajectory generation to construct (optimal) feasible trajectories
» Use local control to handle uncertainty and small scale (fast) disturbances
» Receding horizon control: iterate trajectory generation during operation

21 Feb 07 R. M. Murray, Caltech 2



Murray, Hauser et al
SEC chapter (IEEE, 2002)

Receding Horizon Control
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Solve finite time optimization over T seconds and implement first AT seconds
. +T
U pvary = argmin [ L(x(),u@)) e +V (x(t + 7))
Xo=x(t) x,=x, (t+T1) \ Finite horizon \ Terminal

optimization cost
i=f(xu) glxu)<0 :

Requires that computation time be small relative to time horizons
« Initial implementation in process control, where time scales are fairly slow
» Real-time trajectory generation enables implementation on faster systems
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Stability of Receding Horizon Control

RHC can destabilize systems if not done properly
« For properly chosen cost functions, get stability with T sufficiently large
¢ For shorter horizons, counter examples show that stability is trickier

Thm (Jadbabaie & Hauser, 2002). Suppose that the terminal cost V(x) is a control
Lyapunov function such that

min(V + L)(x,u) < 0

for each x € Q, = {x: V(x) < r%}, for some r > 0. Then, for every T> 0 and AT € (0; T],
the resulting receding horizon trajectories go to zero exponentially fast.

Remarks
 Earlier approach used terminal trajectory constraints; hard to implement in real-
time
¢ CLF terminal cost is difficult to find in general, but LQR-based solution at
equilibrium point often works well - choose V' = xT P x where P = Riccati soln
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RHC Design: Choice of Cost Function

Q: How do we choose RHC cost to get desired performance
* RHC deals w/ constraints, but shifts design freedom into choice of weights

Thm (Kalman, 1964) Given any state feedback law u = -KXx, there exists a cost
function such that the optimal controller for that cost generates the given feedback
law

» Theorem can be used to show that finite time horizon cost function also exists
« Basic idea: solve the algebraic Riccati equation for P, Q, R given K
ATP+ PA—PBR'BTP+Q=0
R'BTP =K.
» Kalman showed you can always find positive definite solution to these eqns
« “Extension” to finite horizon problem: set Py = P and use

T
J = / Qx4+ u" Rudt + 2™ (T) Prz(T)
0
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RHC Design Philosophy

Use linear design as specification
‘ for RHC-based control
Linear System

2~ * Linearize system around
representative operation point

» Design controller using linear tools

. . Linecarized Model
Nonlinear System cateee ©

with Constraints

- § Linear (Hl‘ Ioopshaping, etc)

Constraints and ? o ]

Nonlinearities Design » Compute finite horizon cost

' function with terminal constraint
that yields controller
Recgding Cost Function fitcis Conitallss * Plug in to RHC computation to

Horizon i handle nonlinearities, constraints
Control

Remarks
« Can extend linear state space results to NL systems with CLF-based control
« General theory of dynamic compensators (eg, loopshaping) still open

« Challenge: must be able to generate (optimal) trajectories fast...
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Trajectory Generation Using Differential Flatness

x = f(x,u) x = x(z, 2,...,z9)
= h ' (p) ; (@)
z o, u, ..., u?’) — u=u(zz..,z7)
‘u‘ <L Complicated (algebraic) constraints

[ 2(0) [ z(T) ,-
2(0) : #(T) z= Yo' )
Z,=| Z(0) N\~ z,=| ZT) _
: : Mo, = lzz"]
_Z(q)(o)_ _Z(q)(T)_ f

» Use basis functions to parameterize output = linear problem in terms of coefficients
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Optimal Control Using Differential Flatness

Can also solve constrained optimization problem via flatness

min.]—/ L(z,u)dt + V(x(T),u(T))

to

subject to * Input constraints

5= f(a: u) g(a: u) <0 — { « State constraints
? M) —_

If system is flat, once again we get an algebraic problem:

_ : (4) T
X = X(Z, Zyeees Z ) min.]:/ L{a,t)dt + V()
u =u(z,z,...,z7) N to
g, 1) <0

z=You' ()

» Constraints hold at all times = potentially over-constrained optimization

Finite parameter optimization problem

¢ Numerically solve by discretizing time (collocation)
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Trajectory Generation Using Splines for Flat Outputs

knotpoint
collocation poi\t' < m; at knotpoints defines smoothness

’/ /kj — 1 degree polynomial between knotpoints
2i(to) collocation point

z;(t)

Rewrite flat outputs in terms of splines

Pj .
zj = Z Bi’kj(t)Cg for the knot sequence t; B;;; = basis functions
i=1

C/ = coefficients
pj = lj(kj —m;) +m;
. = flat output:
Evaluate constrained optimization at collocation points: & at outpuis

min J(Z(t;)) subject to b <c(z(t;)) < ub
CeRM
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Application: Caltech Ducted Fan

Flight Dynamics
mz = —Dcosy — Lsiny + Fx, cost + Fz, sin6
mZ = Dsiny — Lcosy —mg.ss + Fx,sin0 + Fz cos6

. 1
JO = Mg — —1pSQ2x cOS 0 + My

Ts L= %pVQSCL(a)
a=0-7  angle of attack D:%pVQSCD(a)
-1 —% .
= — fligh h |
v = tan = ight path angle M, = %Ep‘/QSCM(Oz)
RHC Implementation C Cp Cu
e System is approximately flat, even with = ;g R i
aerodynamic forces /\ /\ N \ /\ A
¢ More efficient to over-parameterize the o \ | \\ 2 | \\ II \ l \
outputs; use z = (x, y, 0) \ | [V \ l
« Input constraints: max thrust, flap limits, 4, 11 . \
flap rates 8 1 \/

= 2 E 2 E 2
alpha (rad) alpha (rad) alpha (rad)
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Milam, Mushambi, M

Implementation using NTG Software Library "

Features Planar Ducted Fan: Warm Starts
* Handles constraints

 Very fast (real-time),
especially from warm star
« Good convergence

iIN /™
1
Weaknesses " ij
* No convergence proofs St : : .
* Misses constraints time ()
between collocation point: ,
« Doesn’t exploit mechanic: Ner b

structure (except through Ve %4,'///—\}\

flatness)

x (m)

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html
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Example: Trajectory Generation for the Ducted Fan

Caltech Ducted Fan

¢ Ducted fan engine
with vectored thrust

« Airfoil to provide lift in
forward flight mode

 Design to emulate
longitudinal flight
dynamics

 Control via dSPace-
based real-time
controller

Trajectory Generation Task: point to point motion avoiding obstacles
 Use differential flatness to represent trajectories satisfying dynamics
« Use B-splines to parameterize trajectories
 Solve constrained optimization to avoid obstacles, satisfy thrust limits
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From Real-Time Trajectory Generation to RHC

Three key elements for making RHC fast enough for motion control applications
« Fast computation to optimize over many variables quickly
« Differential flatness to minimize the number of dynamic constraints
» Optimized algorithms including B splines, colocation, and SQP solvers

Use of feedback allows substantial approximation
» OK to approximate computations since result will be recomputed using actual state
* NTG exploits this principle through the use of collocation

Can further optimize to take into account finite computation times

Tuning tricks

« Compute predicted
state to account for
computation times

» Optimize
collocation times
and optimization
horizon

» Choose sufficiently
smooth spline basis

state

tume

Trigger 1 Trigger2  Trigger 3 Triggerd4  Trigger 5 Trigger 6
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Milam, Franz, Hauser, 2002 ACC
Dunbar, Milam, Murray, 2002 IFAC

Experiments: Caltech Ducted Fan

Average run time for previous second of computation PC response to 6m offset in x for various horizons
0.4 T T T r :
: —— T=15
s —— T=20
3 : : —— T=3.0
S0.3F e e T=4.0 [ b ‘
3 : ; o T=6.0
2, - : step ref :
g ’E R IEE — +T=1.5
502 N — oT=20 :
§ s o] SR A R 3 T = 30
o | | — xT=4.0 :
%O.l 1 K s coine / , .......... . . T = ()‘O \
z : i ; : :
O_
0 i i i - ; i ; ; i
0 5 E 20 -5 0 5 10 15 20 25
seconds after initiation time (sec)

Real-Time RHC on Caltech Ducted Fan (Aug 01)
¢ NTG with quasi-flat outputs + Lyapunov CLF
¢ Average computation time of ~100 msec

« Inner (pitch) loop closed using local control law; RHC for
position variables

¢ Inner/outer tradeoff: how much can be pushed into optimization
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Highly Aggressive Constrained Turnaround

e Goal: -5 to 5 m/s. Final x position
arbitrary, z within state constraint, 2 2
Thrust vectoring within constraints 50 e
« |nitial guess: Random . N
e Computation Time: 1.12 sec Sparc —50 ; :
Ultra 10 83.3% CPU usage Time (s) Time (s)
« 6t order B-splines, seven intervals »
for each output, 30 equally spaced = s Lo
collocation points % i —&
* Full aerodynamic model s g,
) \4 : 1
5 B 5
Time (s) Time (s)
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Franz, Milam et al
ACC 2002

dSPACE-based control system
* Two C30 DSPs + two 500 MHz DEC/Compag/HP Alpha processors
« Effective servo rates of 20 Hz (guidance loop)
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Trajectory Generation for Non-Flat Systems

If system is not fully flat, can still apply NTG . )
x=x(z,z,...,29)

z=z(x,u,1t,...,.u'") —— u=u(zz,..,27)
= f(xu) <
— () =Ty, 3,...."")

y = h(x,u)
0=®(y, ..., ")
When system is not flat, use quasi-collocation
¢ Choose output y=h(x,u) that can be used to compute the full state and input
« Remaining dynamics are treated as constraints for trajectory generation
e Example: chain of integrators

G =x yo=x X =N Solve using
1= 1= . i
. > * N =Y, =0 NZ"ZQWzth
Xy =U Yy =X . —u
U=y,

Can also do full collocation (treat all dynamics as constraints)

(x,u) = EO‘}P i(t ) Each equation gives constraints at collocation

. oints = highly constrained optimization

x(t,) = f(x(7),u(z,)) P gy P
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Petit, Milam, Murray
NOLCOS, 2001

Effect of Defect on Computation Time

Defect as a measure of flatness X, =5x,

» Defect = number of remaining
differential equations

» Defect 0 = differentially flat

. . 2

X, =sinx, +x; +5x;
Xy ==X X, + X3 + 5x,
Sample problem: 5 states, 1 input Xy = XXX+ XX; + Xy + 5X;
* X4 is possible flat output Xs =—Xs+U

« Can choose other outputs to get
systems with nonzero defect 5 Full collocatipn

* 200 runs per case, with random 4 Inverse dynamic optimization
initial guess
Computation time related to defect
through power law
» SQP scales cublicly = minimize the
number of free variables

y=2.80*x-8.51

log(cputime)

Dramatic speedup through reduction -1 [~ Flatness parametrization

of differential constraints

1 2 3 4 5 6
log(Number of Variables)
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Milam, Petit, Murray

Example 2: Satellite Formation Control ™"

Goal: reconfigure cluster of satellites using minimum fuel

Reconfiguration Stationkeeping Deconfiguration

—L T

Dynamics given by Hill’s equations (fully actuated = flat)

_pq1 3J2NR3‘11 (q% + q% - 4q§)

. I
T 2/q7 "
. ugp 3nR2q (43 -443)
T 2/q17 "
. pgz 31nR2q3 (362 +3d3-243)
R 2/ -
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Satellite Formation Results

Station-keeping optimization
« Maintain a given area between the

satellites (for good imaging) while
minimizing the amount of fuel

« |dea: exploit natural dynamics of
orbital equations as much as
possible

« Input constraints: AV < 20 m/s/year

Results

» Use NTG to optimize over 60 orbits
(~3 days), then repeat

Projected area of

¢ Results: at 45* inclination, obtain satellites
10.4 m/s/year
i — 0 deg S 100 m? S =200 m? £
d <500 m [ AV = 256 m/s/yvear | AV = 47.8 m/s/year ’
15 dex S — 100 m? S = 200 m® b
d <500 m [ AV = 104 m/s/yvear | AV = 17.0 m/s/year o e
90 deg S = 100 m* S = 200 m*
d < 500m [ AV = 869 m/s year | AV = 214 m/s/year
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Example 3: MVWT Control Design

LQR control law

: /‘k Constraint (post)
P

m)'c'=—'r]x'n-(1‘”‘ + ) cosO X s i
my <=ny + ({; + Fﬂ sin® Y

I A
Reference

Initial cpnglition

J6 = —1P9'+ (Fs"'F:u)’/ 2o % 2 i 8
X(m
Control design technique RHC control law
1. LQR design of state space controller K 7
around reference velocity g
2. Choose P, Q, R using Kalman’s formula _
3. Implement as a receding horizon control with = T \
input and state space constraints g \L( [ {?\
T v/
* RHC controller respects state space constraint
1
GO 2 4 6 8
X motion (m)
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Summary: Optimization-Based Control

state

|1>
5 |(C
AN
;7

time

Receding horizon control (RHC) for constrained systems
 Allows nonlinear dynamics + input and state constraints
* Need to be careful with terminal conditions to insure stability
Differential flatness is an enabler for practical implementation of RHC
« Allows fast computation of (optimal) trajectories
* NTG can be used to implement RHC; works for (slightly) non-flat systems
Caltech ducted fan implementation illustrates applicability of results
 Real-time control on representative flight control platform with no inner loop
« Extensions to multi-vehicle testbed are being implemented
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