

CDS 110b: Lecture 5-1 KF Extensions and Applications

Richard M. Murray 29 January 2007

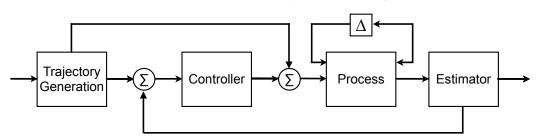
Goals

- · Review modern (optimization-based) control systems structure
- Describe nonlinear, non-Gaussian extensions to KF: MHE + particle filters
- Introduce course project possibilities (as applications of estimation)

Reading (optional)

• Cremean et al, "Alice: A Networked Control System for Autonomous Desert Driving", *J. Field Robotics*, 2006. (Available at http://gc.caltech.edu)

Modern Control System Design



Traditional Control System: controller + process

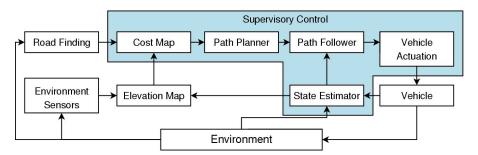
• Corresponds to "inner loop" of most control system designs

Modern Control System: optimization-based design + robust analysis

- Replace reference with reference trajectory (Weeks 5-9)
- Replace process output with estimated output (Weeks 1-4)
- Replace "inner loop" controller with robust controller (Week 10 + CDS 212/213)

Example: Autonomous Driving

Cremean et al, 2006 J. Field Robotics



Computing

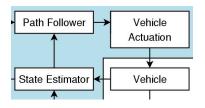
- 6 Dell 750 PowerEdge Servers (P4, 3GHz)
- 1 IBM Quad Core AMD64 (fast!)
- 1 Gb/s switched ethernet

Sensing

- 5 cameras: 2 stereo pairs, roadfinding
- 5 LADARs: long, med*2, short, bumper
- 2 GPS units + 1 IMU (LN 200)
- 0.5-1 Gb/s raw data rates

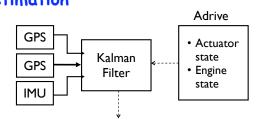
29 Jan 07 Richard M. Murray, Caltech CDS

State Estimation



State estimation: astate

- Broadcast current vehicle state to all modules that require it (many)
- Timing of state signal is critical use to calibrate sensor readings
- Quality of state estimate is critical: use to place terrain features in global map
- Issue: GPS jumps
 - Can get 20-100 cm jumps as satellites change positions
 - Maintain continuity of state at same time as insuring best accuracy

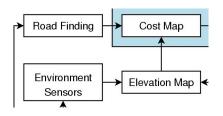


Vehicle position, orientation, velocities, accelerations

Astate

- HW: 2 GPS units (2-10 Hz update), 1 inertial measurement unit (gryo, accel @ 400 Hz)
- In: actuator commands, actuator values, engine state
- Out: time-tagged position, orientation, velocities, accelerations
- Use vehicle wheel speed + brake command/position to check if at rest

Terrain Estimation



Sensor processing

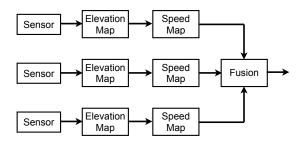
- Construct local elevation based on measurements and state estimate
- Compute speed based on gradients

Sensor fusion

- Combine individual speed maps
- · Process "missing data" cells

Road finding

- · Identify regions with road features
- Increase allowable speed along roads



LadarFeeder, StereoFeeder

- · HW: LADAR (serial), stereo (firewire)
- · In: Vehicle state
- Out: Speed map (deltas)
- · Multiple computers to maintain speed

FusionMapper

- In: Sensor speed maps (deltas)
- · Output: fused speed map
- · Run on quadcore AMD64

29 Jan 07 Richard M. Murray, Caltech CDS

Example: Kalman Filtering for Terrain (Gillula)

KF Framework:

- · State to estimate is elevation of each cell
- Elevation is static so no time updates!

Kalman Filtering:

Propagation Equations:

$$\hat{z}_{i,j}(k+1|k) = \hat{z}_{i,j}(k|k)$$

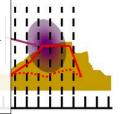
$$P_{i,j}(k+1|k) = P_{i,j}(k|k)$$
 Update Equations:

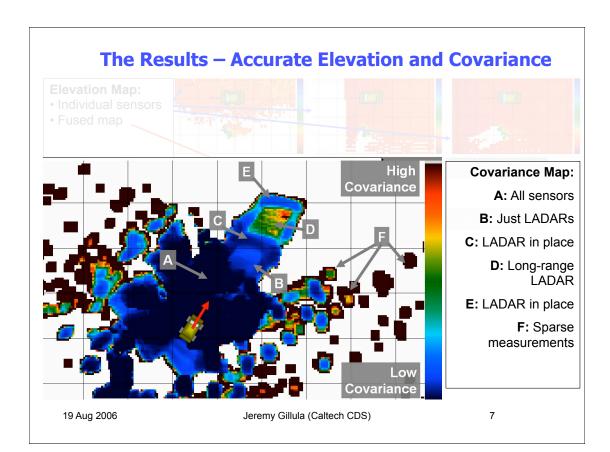
$$\hat{z}_{i,j}(k+1|k+1) = \frac{R\hat{z}_{i,j}(k+1|k) + P_{i,j}(k+1|k)z_m}{P_{i,j}(k+1|k) + R}$$

$$P_{i,j}(k+1|k+1) = \frac{P_{i,j}(k+1|k)R}{P_{i,j}(k+1|k) + R}$$

$$P_{i,j}(k+1|k+1) = \frac{P_{i,j}(k+1|k)R}{P_{i,j}(k+1|k) + R}$$

19 Aug 2006





Henrik Sandberg, 2005

Extension: Moving Horizon Estimation

System description:

$$x_{k+1} = f_k(x_k, w_k)$$

 $y_k = h_k(x_k) + v_k$

$$egin{aligned} y_{k+1} &= f_k(x_k, w_k) \ y_k &= h_k(x_k) + v_k \end{aligned} \qquad x_k \in \mathbb{X}_k, \quad w_k \in \mathbb{W}_k, \quad v_k \in \mathbb{V}_k.$$

The problem: Given the data

$$Y_k = \{y_i : 0 \le i \le k\},\,$$

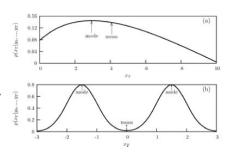
find the "best" (to be defined) estimate \hat{x}_{k+m} of x_{k+m} . (m = 0 filtering, m > 0 prediction, and m < 0 smoothing.

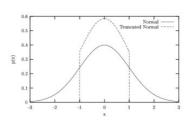
Pose as optimization problem:

$$\{\hat{\pmb{x}}_0,\ldots,\hat{\pmb{x}}_T\} = rg\max_{\{x_0,\ldots,x_T\}} pig(x_0,\ldots,x_T|Y_{T-1}ig)$$

Remarks:

• Basic idea is to compute out the "noise" that is required for data to be consistent with model and penalize noise based on how well it fits its distribution





29 Jan 07 Richard M. Murray, Caltech CDS

Extension: Moving Horizon Estimation

Solution: write out probability and maximize

$$\begin{split} \arg\max_{\{x_0,...,x_T\}} p(x_0,\dots,x_T|y_0,\dots,y_{T-1}) \\ &= \arg\max_{\{x_0,...,x_T\}} p_{x_0}(x_0) \prod_{k=0}^{T-1} p_{v_k}(y_k - h(x_k)) p(x_{k+1}|x_k) \\ &= \arg\max_{\{x_0,...,x_T\}} \sum_{k=0}^{T-1} \log p_{v_k}(y_k - h_k(x_k)) + \log p(x_{k+1}|x_k) + \log p_{x_0}(x_0) \end{split}$$

Special case: Gaussian noise

$$\min_{x_0,\{w_0,...,w_{T-1}\}} \sum_{k=0}^{T-1} \|y_k - h_k(x_k)\|_{R_k^{-1}}^2 + \|w_k\|_{Q_k^{-1}}^2 + \|x_0 - ar{x}_0\|_{P_0^{-1}}^2$$

- · Log of the probabilities sum of squares for noise terms
- Note: switched use of w and v from Friedland (and course notes)

29 Jan 07

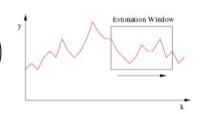
Richard M. Murray, Caltech CDS

9

Extension: Moving Horizon Estimation

Key idea: estimate over a finite window in the past

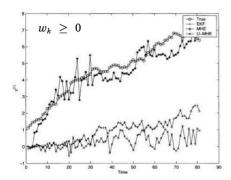
$$egin{aligned} \Phi_T^* &= \min_{x_0,\{w_k\}_{k=0}^{T-1}} \left(\sum_{k=T-N}^{T-1} L_k(w_k,v_k) + \sum_{k=0}^{T-N-1} L_k(w_k,v_k) + \Gamma(x_0)
ight) \ &= \min_{z \in \mathcal{R}_{\cdot T-N},\{w_k\}_{k=T-N}^{T-1}} \left(\sum_{k=T-N}^{T-1} L_k(w_k,v_k) + \mathcal{Z}_{T-N}(z)
ight). \end{aligned}$$



Example (Rao et al, 2003): nonlinear model with positive disturbances

$$\begin{split} x_{1,k+1} &= 0.99x_{1,k} + 0.2x_{2,k} \\ x_{2,k+1} &= -0.1x_{1,k} + \frac{0.5x_{2,k}}{1 + x_{2,k}^2} + w_k \\ y_k &= x_{1,k} - 3x_{2,k} + v_k \end{split}$$

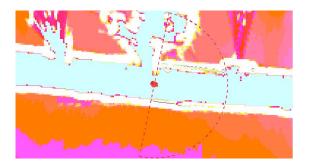
 EKF handles nonlinearity, but assumes noise is zero mean => misses positive drift



Extension: Particle Filters

Sequential Monte Carlo

- Rough idea: keep track of many possible states of the system via individual "particles"
- Propogate each particle (state estimate + noise) via the system model with noise
- Truncate those particles that are particularly unlikely, redistribute weights



Remarks

- Can handle nonlinear, non-Gaussian processes
- Very computationally intensive; typically need to exploit problem structure
- Being explored in many application areas (eg, SLAM in robotics)
- Lots of current debate about information filters versus MHE versus particle filters

29 Jan 07 Richard M. Murray, Caltech CDS

Optional Course Project

Control System Implementation

- Course work focuses on design techniques, analysis, simulation
- Project will focus on implementation of estimators on Alice

Project administration

- Project reports (written and oral) in lieu of midterm and final
- Total time required for implementation: about 30-40 hours (over 10 weeks)
- Selected homework problems are aligned with project schedule
- Do ~1/2 of homework problems in second half of the course

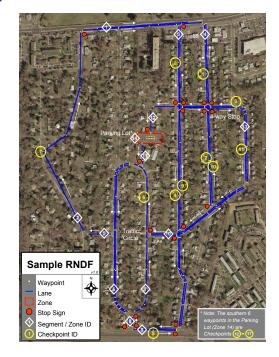
Sample projects

- Lane estimation and tracking using Kalman or particle filters
- Local versus global frame estimation (to cancel effects of GPS drifts, jumps)

2007 Urban Challenge - 3 November 2007

Autonomous Urban Driving

- 60 mile course, less than 6 hours
- City streets, obeying traffic rules
- Follow cars, maintain safe distance
- Pull around stopped, moving vehicles
- · Stop and go through intersections
- Navigate in parking lots (w/ other cars)
- · U turns, traffic merges, replanning
- Prizes: \$2M, \$500K, \$250K



29 Jan 07 Richard M. Murray, Caltech CDS

Sensing and Decision Making

Video from 29 Jun 06 field test

- Front and side views from Tosin
- Rendered at 320x240, 15 Hz
- Manually synchronized

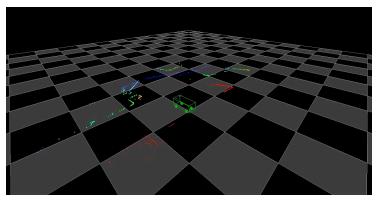
Some challenges

- Moving obstacle detection, separation, tracking and prediction
- Decision-making
- Lane markings (w/ shadows)

Project Idea: Terrain Estimation

Estimate the "terrain" (obstacles, curbs, speed bumps) around the vehicle

- Use data from multiple LADARs and stereo cameras
- Could be formulated as EKF (ala Gillula), MHE or particle filter
- Would like both estimated height as well as uncertainty estimates

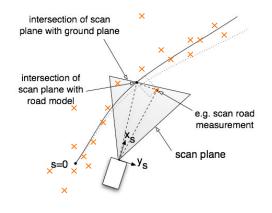


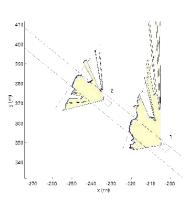
29 Jan 07 Richard M. Murray, Caltech CDS 15

Project Idea: Lane Detection

Create estimate of road location based on measurements of lane features

- Measurements: locations of curbs, lane markings
- State: simple road model (eg, splines, clothoides)
- Starting point: Lars Cremean PhD thesis work (including initial code)
- EKF, IF, MHE, PF implementations possible





29 Jan 07 Richard M. Murray, Caltech CDS

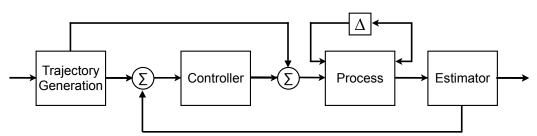
Project Idea: Moving Vehicle Tracking

Compute current and predicted position of a moving vehicle

- Assume measurements of current vehicle location (Laura Lindzey)
- Use model of vehicle motion, with uncertainty corresponding to driver
- Predict future states, with uncertainty according to model

29 Jan 07 Richard M. Murray, Caltech CDS

Modern Control System Design



Traditional Control System: controller + process

• Corresponds to "inner loop" of most control system designs

Modern Control System: optimization-based design + robust analysis

- Replace reference with reference trajectory (Weeks 5-9)
- Replace process output with estimated output (Weeks 1-4)
- Replace "inner loop" controller with robust controller (Week 10 + CDS 212/213)

29 Jan 07 Richard M. Murray, Caltech CDS