

CDS 110b: Lecture 3-1 Kalman Filtering

Richard M. Murray 17 Jan 2007

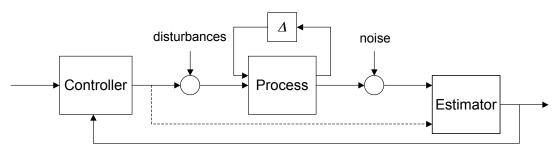
Goals:

- Give state space computations for stochastic system response
- Pose and describe the solution to the optimal estimation problem

Reading:

• Friedland, Chapter 11

The State Estimation Problem



Problem Setup

• Given a dynamical system with noise and uncertainty, estimate the state

$$\dot{x} = Ax + Bu + Fv$$
 $\dot{x} = \alpha(\hat{x}, y, u)$ estimator $y = Cx + Du + Gw$ $\lim_{t \to \infty} E(x - \hat{x}) = 0$ expected value

• \hat{x} is called the *estimate* of x

Remarks

- Several sources of uncertainty: noise, disturbances, process, initial condition
- Uncertainties are unknown, except through their effect on measured output
- First question: when is this even possible?

Stochastic Response: State Space Computations

$$p_{v}(x) = \frac{1}{\sqrt{2\pi Q_{v}}} e^{-\frac{x^{2}}{2Q_{v}}} \underbrace{v}_{x = Ax + Fv} \underbrace{\dot{x} = Ax + Fv}_{y = Cx} \underbrace{v}_{y = Cx} \underbrace{\dot{x} = Ax + Fv}_{y = Cx} \underbrace{v}_{x = Ax + Fv} \underbrace{v}_{y = Cx} \underbrace{v}_{x = Ax + Fv} \underbrace{v}_{x = A$$

Write solution of linear system in terms of state transition matrix, $\Phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

$$\dot{x} = Ax + Fv \qquad \Phi(t, t_0) = e^{A(t - t_0)}$$
$$x(t) = \Phi(t, t_0)x(t_0) + \int_{t_0}^t \Phi(t, \lambda)Fv(\lambda)d\lambda$$

Claim Let v be white noise with $E\{v(\lambda)v^T(\xi)\}=Q_v\delta(\lambda-\xi)$. Then the correlation matrix for x is given by

$$R_x(t,s) = P(t)\Phi^T(s,t)$$
 where
$$\dot{P}(t) = AP + PA^T + FQ_vF$$
$$P(0) = E\{x(0)x^T(0)\}.$$

Stationary case (steady state):

$$R_x(\tau) = Pe^{-A\tau}$$
 where $AP + PA^T + FQ_vF^T = 0$ $P > 0$

17 Jan 07

R. M. Murray, Caltech

Summary: Stochastic Response

$$p(v) = \frac{1}{\sqrt{2\pi Q_v}} e^{-\frac{x^2}{2Q_v}} \quad v \longrightarrow H \longrightarrow y \quad p(y) = \frac{1}{\sqrt{2\pi R_y}} e^{-\frac{x^2}{2R_y}}$$

$$S_v(\omega) = Q_v \qquad \qquad S_y(\omega) = H(-j\omega)Q_v H(j\omega)$$

$$\dot{x} = Ax + Fv \qquad \rho_y(\tau) = R_y(\tau) = CPe^{-A\tau}C^T$$

$$y = Cx \qquad AP + PA^T + FQ_v F^T = 0$$

Remarks

- Both v and y are random processes (not signals)
- Transformations describe how the statistics of the process are mapped through a linear system
- Computations can be done either in frequency domain or time domain (state space)
- Can also work out equations for discrete time systems (useful in signal processing and a bit easier to work with)

3

Optimal Estimation

System description

$$\dot{x} = Ax + Bu + Fv \qquad E\{v(s)v^{T}(t)\} = Q(t)\delta(t-s)$$

$$\dot{y} = Cx + w \qquad E\{w(s)w^{T}(t)\} = R(t)\delta(t-s)$$

• Disturbances and noise are multi-variable Gaussians with covariance Q, R

Problem statement: Find the estimate that minimizes the mean square error $E\{(x(t) - \hat{x}(t))(x(t) - \hat{x}(t))^T\}$

Proposition $\hat{x}(t) = E\{x(t)|y(\tau), \tau \leq t\}$

- Optimal estimate is just the expectation of the random process *x* given the *constraint* of the observed output.
- This is the way Kalman originally formulated the problem.
- Can think of this as a *least squares* problem: given all previous y(t), find the estimate $\hat{x}(t)$ that satisfies the dynamics and minimizes the square error with the measured data.

17 Jan 07

R. M. Murray, Caltech

5

Kalman-Bucy Filter

Theorem 1 (Kalman-Bucy, 1961). The optimal estimator has the form of a linear observer

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

where
$$L(t) = P(t)C^TR^{-1} \& P(t) = E\{(x(t) - \hat{x}(t))(x(t) - \hat{x}(t))^T\}$$
 satisfies
$$\dot{P} = AP + PA^T - PC^TR^{-1}(t)CP + FQ(t)F^T$$

$$P(0) = E\{x(0)x^T(0)\}$$

Proof. (sketch) The error dynamics are given by

$$\dot{e} = (A - LC)e + \xi$$
 $\xi = Fv - Lw$ $R_{\xi} = FQF^{T} + LRL^{T}$

The covariance matrix $P_e = P$ for this process satisfies

$$\dot{P} = (A - LC)P + P(A - LC)^{T} + FQF^{T} + LRL^{T}.$$

We need to find L such that P(t) is as small as possible. Can show that the L that acheives this is given by

$$RL^T = CP$$
 \Longrightarrow $L = PC^TR^{-1}$

17 Jan 07

R. M. Murray, Caltech

Kalman-Bucy Filter

- 1. The Kalman filter has the form of a *recursive* filter: given $P(t) = E\{e(t)e^T(t)\}$ at time t, can compute how the estimate and covariance *change*. Don't need to keep track of old values of the output.
- 2. The Kalman filter gives the estimate $\hat{x}(t)$ and the covariance $P_e(t)$ \implies you can see how well the error is converging.
- 3. If the noise is stationary (Q, R constant) and $if \dot{P}$ is stable, then the observer gain is constant:

$$L = PC^T R^{-1} \qquad AP + PA^T - PC^T R^{-1}CP + FQF^T$$

This is the problem solved by the 1qe command in MATLAB.

4. Kalman filter extracts max possible information about output data

$$r = y - C\hat{x} = \text{residual or } innovations \text{ process}$$

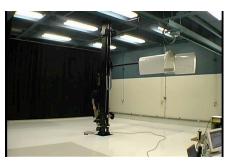
Can show that for the Kalman filter, the correlation matrix is

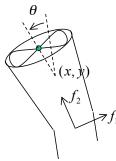
$$R_r(t,s) = W(t)\delta(t-s)$$
 \Longrightarrow white noise

So the output error has *no* remaining dynamic information content

17 Jan 07 R. M. Murray, Caltech 7

Example: Ducted Fan





Estimation:

 Given the xy position of the fan and the inputs (f₁, f₂), determine the full state of the system:

$$x,y,\theta,\dot{x},\dot{y},\dot{\theta}$$

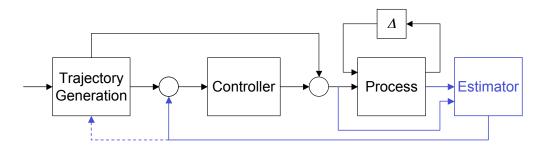
Equations of motion

$$\begin{split} m\ddot{x} &= f_1 \cos \theta - f_2 \sin \theta - c_{d,x}(\theta, \dot{x}) \\ m\ddot{y} &= f_1 \sin \theta + f_2 \cos \theta - mg - c_{d,y}(\theta, \dot{y}) \\ J\ddot{\theta} &= rf_1 - mgl \sin \theta - c_{d,\theta}(\theta, \dot{\theta}) \end{split}$$

Estimator design: see obs_dfan.m



Separation Principle



Stochastic control problem: find C(s) to minimize

$$J = E\left\{ \int_0^\infty \left[(y - r)^T Q (y - r)^T + u^T R u \right] dt \right\}$$

Assume for simplicity that r = 0 (otherwise, translate state accordingly).

Theorem 1. The optimal controller has the form

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

$$u = K(\hat{x} - x_d)$$

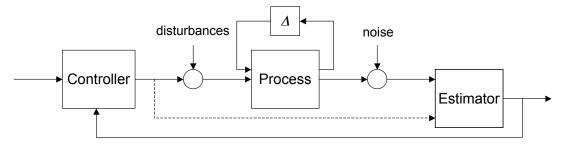
where L is the optimal observer gain ignoring the controller and K is the optimal controller gain ignoring the noise.

17 Jan 07

R. M. Murray, Caltech

9

Summary: Observers and State Estimation



Use stochastic systems framework

 Model disturbances and noise as random processes; characterize by first and second order statistics (mean, variance; correlation)

Kalman filter = optimal estimator

- · Assumes Gaussian white noise; creates best estimate given data
- Implemented as a recursive filter => keep track of estimate + covariance
- Extremely useful in a broad variety of applications (more next week)