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Note: In the upper left hand corner of the second page of your homework set, please
put the number of hours that you spent on this homework set (including reading).

Unless otherwise specified, you may use MATLAB or Mathematica as long as you include a copy
of the code used to generate your answer.

1. Consider the optimal control problem for the system

ẋ = ax + bu J = 1
2

∫ tf

t0

u2(t) dt + 1
2cx2(tf ),

where x ∈ R is a scalar state, u ∈ R is the input, the initial state x(t0) is given, and a, b ∈ R

are positive constants. We take the terminal time tf as given and let c > 0 be a constant
that balances the final value of the state with the input required to get to that position. The
optimal is derived in the lecture notes for week 1 and is shown to be

u∗(t) = −
2abc ea(2tf−to−t)x(to)

2a − b2c
(

1 − e2a(tf−to)
)

x∗(t) = x(to)e
a(t−to) +

b2c ea(tf−to)x(to)

2a − b2c
(

1 − e2a(tf−to)
)

[

ea(tf−t) − ea(t+tf−2to)
]

.

(1)

Now consider the infinite horizon cost

J = 1
2

∫

∞

t0

u2(t) dt

with x(t) at t = ∞ constrained to be zero.

(a) Solve for u∗(t) = −bPx∗(t) where P is the positive solution corresponding to the alge-
braic Riccati equation. Note that this gives an explicit feedback law (u = −bPx).

(b) Plot the state solution of the finite time optimal controller for the following parameter
values

a = 2 b = 0.5 x(t0) = 4

c = 0.1, 10 tf = 0.5, 1, 10

(This should give you a total of 6 curves.) Compare these to the infinite time optimal
control solution. Which finite time solution is closest to the infinite time solution? Why?

2. Using the solution given in equation (1), implement the finite-time optimal controller in
a receding horizon fashion with an update time of δ = 0.5. Using the parameter values in
problem 1(b), Compare the responses of the receding horizon controllers to the LQR controller



you designed for problem 1, from the same initial condition. What do you observe as c and
tf increase?

(Hint: you can write a MATLAB script to do this by performing the following steps:

(i) set t0 = 0

(ii) using the closed form solution for x∗ from problem 1, plot x(t), t ∈ [t0, tf ] and save
xδ = x(t0 + δ)

(iii) set x(t0) = xδ and repeat step (ii) until x is small.)

3. In this problem we will explore the effect of constraints on control of the linear unstable
system given by

ẋ1 = 0.8x1 − 0.5x2 + 0.5u

ẋ2 = x1 + 0.5u

subject to the constraint that |u| ≤ a where a is a postive constant.

(a) Ignoring the constraint (a = ∞) and design an LQR controller to stabilize the system.
Plot the response of the closed system from the initial condition given by x = (1, 0).

(b) Use SIMULINK or ode45 to simulate the the system for some finite value of a with an
initial condition x(0) = (1, 0). Numerically (trial and error) determine the smallest value
of a for which the system goes unstable.

(c) Let amin(ρ) be the smallest value of a for which the system is unstable from x(0) = (ρ, 0).
Plot amin(ρ) for ρ = 1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control law for this
system. Show that this controller has larger region of attraction than the controller
designed in part (b). (Hint: solve the finite horizon LQ problem analytically, using the
bang-bang example as a guide to handle the input constraint.)

4. Consider the lateral control problem for an autonomous ground vehicle, as shown below:

y

x

l

φ

θ

ẋ = cos θ v

ẏ = sin θ v

θ̇ =
1

`
tan φ v,

Let (x, y, θ) represent the state and (v, φ) the inputs. For simplicity we will assume ` = 1
meter.

(a) Show that this system is differentially flat using z = (x, y) and solve explicitly for the
state and input in terms of the flat output and its derivatives. Note any special situations
in which additional assumptions are required (eg, if you equations go singular at some
point, you may need to stay away from these points).
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(b) Using the fact that the system is differentially flat, find an explicit trajectory that solves
the following parallel parking manuever:

x0 = (0, 4)

xf = (0, 0)

xi = (6, 2)

Your solution should consist of two segments: a curve from x0 to xi with v > 0 and
a curve from xi to xf with v < 0. For the trajectory that you determine, plot the
trajectory in the plane (x versus y) and also the inputs v and φ as a function of time.
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