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Note: In the upper left hand corner of the second page of your homework set, please
put the number of hours that you spent on this homework set (including reading).

Unless otherwise specified, you may use MATLAB or Mathematica as long as you include a copy
of the code used to generate your answer.

1. The output c(t) in a position-control system is governed by

Jc̈ = u,

where u(t) is applied force.

(a) Write down a state space realization (find A and B).

(b) Use the matrix Riccati equation to find the feedback control law minimizing

∫ ∞

0

(c2 + q2u2)dt.

(c) Show that the optimal control system has damping ratio 1√
2
.

(d) What is the corresponding optimal value of natural frequency?

(See AM05, Sec 4.4 if you don’t remember how damping ratio (or factor) and natural frequency
are defined.)

2. (Friedland 9.6) Consider the dynamics of a DC motor driving an inertial load (see Friedland,
page 231 for a picture):

θ̇ = ω

ω̇ = −αω + βu

where θ is the angular position of the load, ω is the angular velocity, u is the applied voltage,
and α and β are constants that depend on the physical parameters of the motor and load.
For this problem, let α = 1 and β = 3.

(a) Let e = θ − θd. For the performance criterion

V =

∫ ∞

0

(q2

1e
2 + u2) dτ

find and tabulate the control gains and corresponding closed-loop poles for q1 = 0.1, 1, 10.

(b) Plot the transient response (e as a function of t) for the inital error of unity for the
values of q1 in part (a). (Note: you should use the MATLAB initial function to get
the transient response to an initial error. Set the initial condition for θ appropriately.)



(c) In addition to weighting the position error it is also desired to limit the velocity by using
a performance criterion

V =

∫ ∞

0

(q2

1e
2 + q2

2 ė
2 + u2) dτ.

For the values of q2
1

used in part (a) and q2
2

= 0.1q2
1
, q2

1
, 10q2

1
find the control gains and

corresponding closed loop poles.

(d) Plot the transient response as in part (b) for a range of q2
1

and q2
2

(you need not include
all 9 plots; just the “interesting” ones). Compare the results with those of part (b). Are
the results as expected?

3. (Friedland 2.1, 3.6, 7.2, 9.10) Consider the motor-driven inverted pedulum on a cart, whose
linearized dynamics are given by

ẍ +
k2

Mr2R
ẋ +

mg

M
θ =

k

MRr
u

θ̈ −

(

M + m

Ml

)

gθ −

k2

Mr2Rl
ẋ = −

k

MRrl
u

where k is the motor torque constant, R is the motor resistance, r is the ratio of the linear
forces applied to the cart (τ = rf), and u is the voltage applied to the motor. The following
numerical data may be used:

m = 0.1 kg M = 1.0 kg l = 1.0 m g = 9.8 m/s2

k = 1 V · s R = 100 Ω r = 0.02 m

We wish to optimize the gains using a performance criterion of the form

V =

∫ ∞

0

(

q2

1x
2 + q2

3θ
2 + ρ2u2

)

dt

A pendulum angle much greater than 1 degree = 0.017 rad would be precarious. Thus a
heavy weighting error on θ is indicated: q2

3
= 1/(0.017)2 ≈ 3000. For the physical dimensions

of the system, a position error of the order of 10 cm = 0.1 m is not unreasonable. Hence
q2
1

= 1/(0.1)2 = 100.

(a) Using these values of q2
1

and q2
3
, determine and plot the gain matrices and corresponding

closed loop poles as a function of the control weighting parameter ρ2 for 0.001 < ρ2 < 50.

(b) Repeat part (a) for a heavier weighting: q2
1

= 104 on the cart displacement.

(c) Plot the step responses for the controllers you defined in parts (a) and (b) and explain
their behavior in terms of the cost functions you used.

4. Consider the lateral control problem for an autonomous ground vehicle, as shown below.

2



y

x

l

φ

θ
ẋ = cos θ v

ẏ = sin θ v

θ̇ =
1

`
tan φ v,

The dynamics for the system are given in the equation above, where (x, y) is the location of
the center of the rear wheels of the vehicle, θ is the angle of the vehicle with respect to the x
axis, v is the forward velocity of the vehicle, φ is the angle of the steering wheel (an input)
and ` is the wheelbase of the vehicle.

We assume that we are given a reference trajectory r = (xd, yd) corresponding to the desired
trajectory of the vehicle. For simplicity, we will assume that we wish to follow a straight line
in the x direction at a constant velocity vd > 0 and hence we focus on the y and θ dynamics:

ẏ = sin θ vd

θ̇ =
1

`
tanφ vd.

We let vd = 10 m/s and ` = 2 m.

(a) Design an LQR controller that stabilizes the position y to the origin. Plot the step and
frequency response for your controller and determine the overshoot, rise time, bandwidth
and phase margin for your design. (Hint: for the frequency domain specifications, break
the loop just before the process dynamics and use the resulting SISO loop transfer
function.)

(b) Suppose now that yd(t) is not identically zero, but is instead given by yd(t) = r(t).
Modify your control law so that you track r(t) and demonstrate the performance of your
controller on a “slalom course” given by a sinusoidal trajectory with magnitude 1 meter
and frequency 1 Hz.
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