CDS 110b: Lecture 5-2
Kalman Filtering
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Goals:
» Give state space computations for stochastic system response
* Pose and describe the solution to the optimal estimation problem

Reading:
 Friedland, Chapter 11
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The State Estimation Problem
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Problem Setup
« Given a dynamical system with noise and uncertainty, estimate the state

x = Ax + Bu+ Fv T = a(Z,y,u) <«— estimator
— . .
y = Cx + Du+ Gw lim E(x —z) =0
t—0o0 g
« 7 is called the estimate of x expected value
Remarks

» Several sources of uncertainty: noise, disturbances, process, initial condition
« Uncertainties are unknown, except through their effect on measured output
 First question: when is this even possible?
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Stochastic Response: State Space Computations

2
2 . 1 __a? _
1 e 2Qv V |z = Az + Fv| Y e 2Fz(0)

_ z)=C
Ru(7) = Qué(7) y=0a Ry(7) = CRy(7)CT

Write solution of linear system in terms of state transition matrix, ®:R" x R"— R"

x = Ax + Fv d(t,tg) = cA(t—to)

(1) = (L to)a(to) + /t Z ® (£, \)Fo(\)dA

Claim Let v be white noise with E{v(A\)vT(¢)} = Qu6(A — €). Then the corre-
lation matrix for x is given by

P(t) = AP + PAT 4+ FQ.F

— T S
Ra(t,s) = PO s0) - where o) pe(0)2T(0)),

Stationary case (steady state):

Ry(7) = Pe A7 where AP+ PAT + FQ,FT =0 P>0
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Summary: Stochastic Response

22
p(v) = riere_QQv
Sv(w) = Qu

pv(T) = Qud(T)

Remarks

* Both v and y are random processes (not signals)

v —> — Y
r = Axz + Fv
y=Cx

p(y) =

2

X
1 2Ry

\/ 2T Ry

&

Sy(w) = H(—jw)QuH (jw)

py(7) = Ry(r) = CPe=A7CT
AP + PAT + FQ,FT =0

» Transformations describe how the statistics of the process are mapped
through a linear system

« Computations can be done either in frequency domain or time domain (state

space)

« Can also work out equations for discrete time systems (useful in signal
processing and a bit easier to work with)
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Optimal Estimation

System description
& = Az 4+ Bu + Fv E{v(s)v! ()} = Q)s(t — s)
y=Cz+ w E{w(s)wl (t)} = R(t)5(t — s)

» Disturbances and noise are multi-variable Gaussians with covariance Q, R

Problem statement: Find the estimate that minimizes the mean square error

E{(z(t) — 2(¢))(z(t) — z(¢))T} given {u(t), y(t): 0=t = T}.

Proposition z(t) = E{x(t)|y(r), T <t}
« Optimal estimate is just the expectation of the random process x given the
constraint of the observed output.

 This is the way Kalman originally formulated the problem.

e Can think of this as a least squares problem: given all previous y(t), find the
estimate z(t) that satisfies the dynamics and minimizes the square error
with the measured data.
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Kalman-Bucy Filter

Theorem 1 (Kalman-Bucy, 1961). The optimal estimator has the
form of a linear observer

T = AZ + Bu+ L(y — CZ)
where L(t) = P(t)CTR™! & P(t) = E{(=(t)—z(t)) (x(t)—z(t))T} satisfies

P= AP+ PAT — PCTR™Y(t)cP 4+ FQt)FT
P(0) = E{z(0)z" (0)}

Proof. (sketch) The error dynamics are given by
e =(A—LCO)e+¢ ¢ = Fv— Lw Re = FQF' + LRL"
The covariance matrix P, = P for this process satisfies
P=(A-LC)P+ P(A—-LO)' + FQFT + LRL".

We need to find L such that P(t) is as small as possible. Can show that
the L that acheives this is given by

RLT =cP — L=pPCcTR™!
1 Feb 06 R. M. Murray, Caltech 6



Kalman-Bucy Filter

1. The Kalman filter has the form of a recursive filter: given P(t) =
E{e(t)el'(t)} at time ¢, can compute how the estimate and covari-
ance change. Don’t need to keep track of old values of the output.

2. The Kalman filter gives the estimate z(t) and the covariance P.(t)
—= YyoOu can see how well the error is converging.

3. If the noise is stationary (Q, R constant) and if P is stable, then the
observer gain is constant:

L=pPCTR1 AP+ PAT — pcTR 1P + FQFT
This is the problem solved by the 1ge command in MATLAB.
4. Kalman filter extracts max possible information about output data

r =y — C'x = residual or innovations process
Can show that for the Kalman filter, the correlation matrix is
Ry (t,s) = W(t)6(t — s) — white noise

So the output error has no remaining dynamic information content
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Example: Ducted Fan

Estimation:

» Given the xy position
of the fan and the
inputs (f,, f,),
determine the full
state of the system:

x) y? 07 x-7 y70

Equations of motion

mz = f1COSO — fosinf —cq (0, 1)

To: Out(2)

my = f1sin0 + focos —mg —cq,,(0,9)
JO = rfi —mglsinf — cd,9(9,9)

Estimator design: see obs_dfan.m

0.6
Time (sec)
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Separation Principle

Trajectory
Generation

» Controller » Process —» Estimator

______________

Stochastic control problem: find C(s) to minimize

J=F {/Ooo [(y —MIQ—r)T + uTRu} dt}

Assume for simplicity that » = 0 (otherwise, translate state accordingly).
Theorem 1. The optimal controller has the form

= AZ + Bu+ L(y — C%)
u= K@ — xy)

where L is the optimal observer gain ignoring the controller and K is the optimal
controller gain ignoring the noise.
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Summary: Observers and State Estimation
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Use stochastic systems framework

» Model disturbances and noise as random processes, characterize by first
and second order statistics (mean, variance; correlation)

Estimator

Kalman filter = optimal estimator
« Assumes Gaussian white noise; creates best estimate given data
* Implemented as a recursive filter => keep track of estimate + covariance
« Extremely useful in a broad variety of applications (more next week)
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