CDS 110b: Lecture 2-1
Linear Quadratic Regulators

Richard M. Murray
11 January 2006

Goals:
 Derive the linear quadratic regulator and demonstrate its use

Reading:
* Friedland, Chapter 9 (different derivation, but same result)
« RMM course notes (available on web page)
e Lewis and Syrmos, Section 3.3

Homework #2
» Design LOQR controllers for some representative systems
 Due Wed, 18 Jan by 5 pm, in box outside 109 Steele
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Review from last lecture

Trajectory
Generation

Trajectory Generation via Optimal Control:

T
J =/0 L(z,u) dt + V(z(T))

Controller

A [—

>

Process |

—>

Estimator

z = f(z,u)  =R"
x(0) given uwe€ Q CRP

Y(z(T)) =0

Today: focus on special case of a linear quadratic regulator

= Ax + Bu z =R"

x(0) given ueRP

11 Jan 06

R. M. Murray, Caltech

Nno terminal constraints

T
J = /0 27 Qx + v Rudt + z(T) ! Pyz(T)




Linear Quadratic Regulator (finite time)

Problem Statement
= Ax + Bu z = R"

- 1 /T, - 1.
) —z' (T)Pyx(T
2(0) given weRP > Jy (7Qu+uRu) db+ ol (1) Pra(T)

» Factor of 1/2 simplifies some math below; optimality is not affected

Solution: use the maximum principle

H = 2'Qx + v Ru + M (Az + Bu)

T = <8H>T —=Ax + Bu x(0) = zq

E)N
. HN\T
A= (%—) —0z+ATA  AT) = Pra(T)
€T
0 =%—H —Ru+\'B =—=— uw=-R1BT)\
u

* This is still a two point boundary value problem = hard to solve
* Note that solution is linear in x (because A is linear in x, treated as an input)
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Simplified Form of the Solution

Can simplify solution by guessing that A = P(t) x(t)

: OHN\T T From maximum
“A=(50) =Qu+ATx  NT) = Pa(T) o
A= Pr+ Pi=Pz+ P(Az — BR'BT'P)x  <«— Substitute
J A = P(t) X(t)

— Pz — PAz + PBR™'BPz = Qz + AT Px.

Solution exists if we can find P(t) satisfying

—P=PA+ATP-PBR1BTP4+Q P(T) =Py

» This equation is called the Riccati ODE; matrix differential equation

» Can solve for P(t) backwards in time and then apply u(t) = -R1 B P(t) x

» Solving x(t) forward in time gives optimal state (and input): x*(t), u™(t)

* Note that P(t) can be computed once (ahead of time) = allows us to find the

optimal trajectory from different points just by re-integrating state equation
with optimal input
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Finite Time LOR Summary

f A
Trajectory |
» —>
Generation (o Co)éller Process Estimator

|

Problem: find trajectory that minimizes
= Ax + Bu =z = R"
x(0) given u e RP

-~ 1 /T 1
J = 5/0 (xTQ:c + uTRu) dt + E:BT(T)Plas(T)

Solution: time-varying linear feedback
uw(t) = —R™1BP(¢t)x.
—P=PA+ATP-PBR1BTP+Q P(T) = Py

* Note: this is in feedback form = can actually eliminate the controller (!)
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Infinite Time LOR

Extend horizon to T = «© and eliminate terminal constraint:

= Ax + Bu z = R"

J= [ (T T Ru) d
— {
z(0) given ueRP /0 (&" Qz 4" Ru)

Solution: same form, but can show P is constant

u= Kx K=-R1BTP <«— State feedback (constant gain)
0=PA+ ATP - PBR'BTP+ Q <+— Algebraic Riccati equation

Remarks
* In MATLAB, K = Iqr(A, B, Q, R)
* Require R >0 but Q = 0 + must satisfy “observability” condition
 Alternative form: minimize “output” y = H x
0 0
L= /O ' H' Hz+u! Rudt = /O |Hz|?+u! Ru dt

* Require that (A, H) is observable. Intuition: if not, dynamics may not affect
cost = ill-posed. We will study this in more detail when we cover observers
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Applying LQR Control

A [—

| Trajectory
P
Generation 4’0—> Controller

Process |

—>

Estimator

Application #1: trajectory generation

* Solve for (x,, y,) that minimize quadratic cost over finite horizon (requires

linear process)

» Use local controller to regulate to desired trajectory

Application #2: trajectory tracking

» Solve LQR problem to stabilize the system to the origin = feedback u = K x

« Can use this for local stabilization of any desired trajectory
» Missing: so far, have assumed we want to keep x small (versus x —x,)
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LQR for trajectory tracking

Goal: design local controller to track x,:

Trajectory | Xd
Generation

Controller

>

> A
V

Process |

—>» Estimator

Approach: regulate the error dynamics
* Lete =x-X,, V=uU-ugand assume f(x, u) = f(x) + g(x) u (simplifies notation)
e =z —zq= f(z) + g(x)u— f(zqg) + 9(zg)uq

= fle+xq) — f(zg) + g(e + xg) (v + ug) — g(zg)ug

— F(ea v, xd(t)a ud(t))

* Now linearize the dynamics around e = 0 and design controllerv=Ke

* Final control law will be u = K (x - x;) + Uy
 Note: in general, linearization will depend on x; = u = K(Xy)X < “gain scheduling”
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Choosing LOR weights

Most common case: diagonal weights

q1 r1
Q= - R=p

dn n

» Weight each state/input according to how much it contributes to cost
« Eg: if error in X, is 10x as bad as error in x,, then g, =10 q,
* OK to set some state weights to zero, but all input weights must be >0

 Remember to take units into account: eg for ducted fan if position error is in
meters and pitch error is in radians, weights will have different “units”

Remarks
* LQR will always give a stabilizing controller, but no gauranteed margins
* LOR shifts design problem from loop shaping to weight choices

» Most practical design uses LQR as a first cut, and then tune based on
system performance
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Example: Ducted Fan

Stabilization:

» Given an equilibrium
position (X4, ¥4) and
equilibrium thrust f,,
maintain stable hover

» Full state available
for feedback

Tracking:
» Given a reference
Equations of motion trajectory (x(t), y,(1)),
find a feasible trajec-
mi = f1C0S0 — foSiN0 — cq,(0,2) tory T4, uq and a

controller u = a(Xx, Xy,

my = f15in 60+ f2c0s0 —mg — cqy(0,9) Ug) such that x — x4

JO = rfi{ —mglsinf — cd,g(e,é)

LQR design: see Iqr_dfan.m (available on course web page)
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Variation: Integral Action

A [—

: X e \Y; .
Trajectory | Controller » Process —» Estimator
Generation

Limitation in LOQR control: perfect tracking requires perfect model
e Control law is u = K (x - X4) + Uy = uy must be perfect to hold e =0

 Alternative: use integral feedback to give zero steady state error
d |z| _ |Az+ Bu| _ |Az + Bu
dt |z| | y—r | | Cx—1r | <«— integral of (output) error

* Now design LQR controller for extended system (including integrator weight)
u= K(zx—xy) — K;z 4+ uy

L equilibrium value = y = r = 0 steady state error
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Example: Cruise Control

. mo = F — F Linearized around v,

{ ‘~/ F = anuT(an’U) ) — av — mgQ —|— mbu
()

v
1 ~
Fy = mgCr + E'OCUAUQ + mgo, y=v=10v-+vg

Step 1: augment linearized (error) dynamics with integrator

4=15 [+ Be+[So+ ] o

Step 2: choose LOQR weights and compute LOR gains Note: linearized
0 about v, but try
Q= [qol ] R=p — K= [k:l kg] to maintain
q2
speed r (near v,)

Step 3: implement controller
z=v-—r
u=ug+ k1(v—17r)+ koz <+— Plcontroller
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Summary: LOQR Control

A [—
Trajectory | .
" Generation —»@—» Controller » Process —> Estimator
A I
Application #1: trajectory generation 2/ TQ:c + uTRu) dt
 Solve for (X, y4) that minimize quadratic T
cost over finite horizon 527 (1) Pra(T)
» Use local controller to track trajectory
. . . . m
Application #2: trajectory tracking J = / (azTQa: + uTRu) dt
0

» Solve LQR problem to stabilize the system
» Solve algebraic Riccati equation to get state gain
e Can augment to track trajectory; integral action
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Announcements

Mailing list
* If you didn’t get e-mail about TA office hours, send email to murray@cds

Late homework policy
* No late homework with out prior permission
» Usually willing to give a few extra days the first time you ask
» Sickness, conferences and other unavoidable conflicts usually work

Lecture recordings
* Will be posting audio recordings of lectures (along with slides) on web site
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