

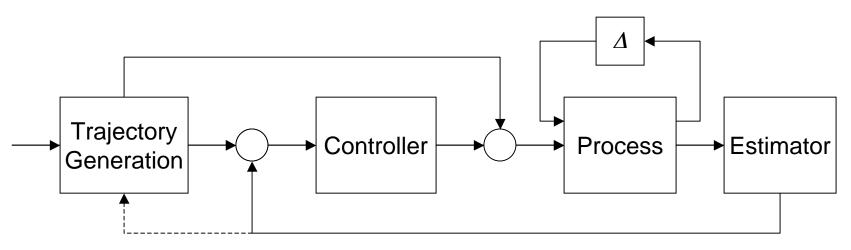
CDS 110b: Lecture 1.3 Course Project Information Session

Richard M. Murray 6 January 2006

Goals:

- Provide enough information on the course project for people to decide whether or not they want to pursue it
- Give a high level introduction to Alice, so that you know what the project is intended to accomplish

Reading:


- Course syllabus (project information section)
- JFR05 paper (for high level overview of Alice) available on the web

Course Project: Alice

Control System Implementation

- Course work focuses on design techniques, analysis, simulation
- Project will focus on implementation of controllers on Alice →
- SURF opportunities available building on project experience (see SURF web page)

Course Project Administration

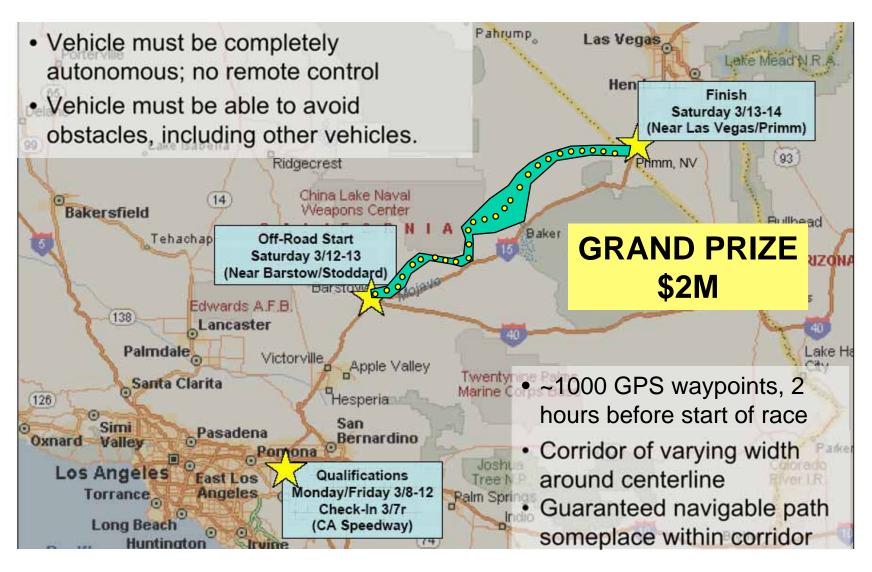
1. Attend three lectures on control implementation - Fridays, 2-3 pm

- Week 1 (this lecture): high level project description
- Week 2 (13 Jan): vehicle dynamics
 + control specification
- Week 3 (20 Jan): hardware and software interfacing

2. Do all course homework

 At least one problem on each set will be tuned for use in the project

3. Spend time implementing your controllers on Alice


- Recommend spending 3-4 hrs/wk, working in small groups
- Jeremy will coordinate "test days" when we can take Alice out

4. Project reports (written and oral) in lieu of midterm and final

- Midterm:
 - 3-5 page report describing implementation of an LQR controller on Alice (must include experimental results)
- Final:
 - 5-10 page report describing full controller implementation (trajectory generation, estimation, robust control)
 - 15-20 minute presentation of controller design and results

Total time required (est): about 30-40 hours (over 10 weeks)

DARPA Grand Challenge: 150 Miles in 10 Hours or Less, No Humans Allowed

Route: Desert Racing Environment

4 Jan 06 R. M. Murray, Caltech

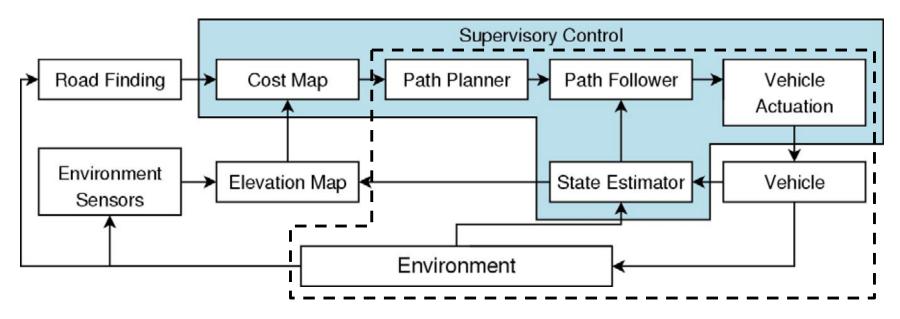
Alice

Alice Overview

Team Caltech

- 50 students worked on Alice over 1 year
- Course credit through CS/EE/ME 75
- Summer team: 20 SURF students + 6 graduated seniors + 4 work study + 4 grads + 2 faculty + 6 volunteers (= ~40)

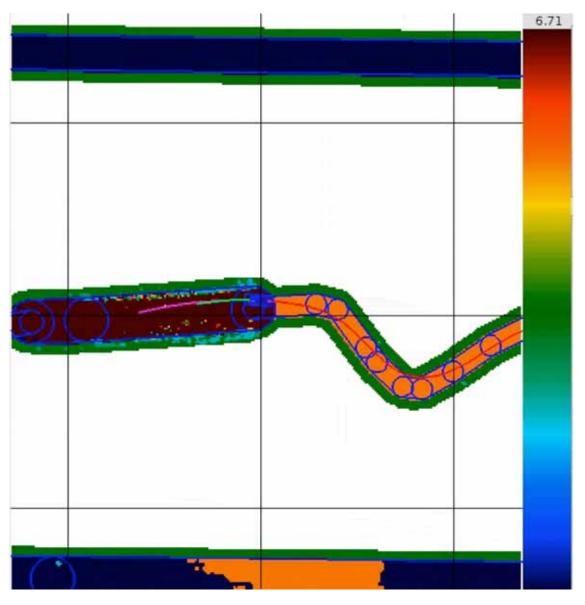
Alice


- 2005 Ford E-350 Van
- Sportsmobile 4x4 offroad package
- 5 cameras: 2 stereo pairs + roadfinding
- 5 LADAR units: long, medium*2, short, bumper
- 2 GPS units + 1 IMU (LN 200)
- 6 Dell 750 PowerEdge Servers (P4, 3GHz, gentoo linux)
- 1 IBM Quad Core AMD64 (fast!)
- 1 Gb/s switched ethernet

Software

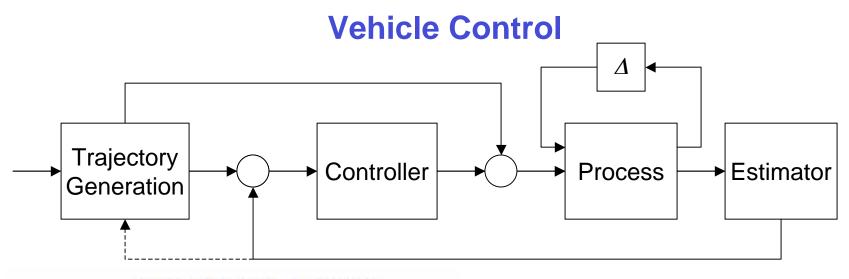
- 15 individual programs with ~50 threads of execution
- FusionMapper: integrate all sensor data into a speed map for planning
- PlannerModule: optimization-based planning over a 10-20 second horizon

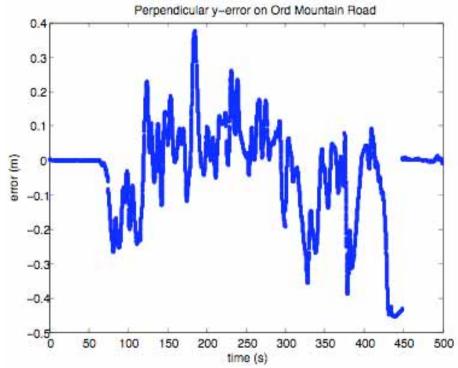
Alice's Architecture


Optimization-Based Control (focus of CDS 110b)

- Real-time optimal trajectory generation
- Kalman filter based state estimation

Additional elements


- Sensor fusion: creating speed maps from estimates of terrain
- Supervisory control: fault and contingency management


Alice's View of the World

Sensor-Based Navigation

- Sensors create digital elevation map (one per sensor)
 - Riegl LADAR: 35 m
 - Mid LADARS: 20m, 10m
 - Stereo: 5-20m
 - Short LADAR: 3 m
- Sensor fusion creates a speed map indicating how quickly a given area can be traversed
 - □ No obstacle ⇒ RDDF limit
 - Roadfinding bumps speed
- Optimization-based planner computes fastest path for next 20-40 meters
- Supervisor Control used if planner fails or state drifts

Trajectory Generation

- Optimize speed along course
- Will simplify for CDS 110b

Estimator

 Estimation position and heading given GPS and IMU measurements

Controller

- LQR, H_∞ or PID design w/ robustness analysis
- ← Sample results

Control Design Process

Frequency Domain:

$$u = C(s)(r - y)$$

$$\dot{z} = Az + B(r - y)$$

$$u = Cz$$

$$\downarrow$$

$$w_{k+1} = \tilde{A}w_k + \tilde{B}(r_k - y_k)$$

$$u = \tilde{C}w_k$$

State Space:

$$u_{[t,t+\Delta T]} = \arg\min \int_{t}^{t+T} L(x(\tau), u(\tau)) d\tau + V(x(t+T))$$

$$x_{0} = x(t) \quad x_{f} = x_{d}(t+T)$$

$$x_{0} = f(x, u) \quad g(x, u) \le 0$$

$$u = K(x - x_{d}) + u_{d}$$

Estimator:

 Construct estimate of current state based on measurement of input/output

$$\hat{x}_{k+1} = \tilde{F}\hat{x}_k + \tilde{G}u_k + L(\hat{H}\hat{x}_k - y_k)$$

Testing

Team Caltech

DARPA Site Visit May 11, 2005