

CDS 110b: Lecture 1-2 Introduction to Optimal Control

Richard M. Murray 4 January 2006

Goals:

- Introduce the problem of *optimal* control as method of trajectory generation
- State the maximum principle and give examples of its usage

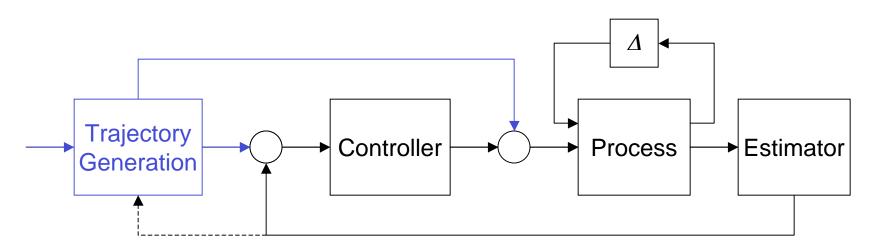
Reading:

- Lewis and Syrmos, Section 3.1-3.2 (available on web page)
- RMM course notes (available on web page)

Homework #1

- Apply the maximum principle to some simple problems
- Due Wed, 11 Jan by 5 pm, in box outside 109 Steele

Trajectory Generation



System Dynamics: $\dot{x} = f(x, u)$

Trajectory Generation: $r \rightarrow (x_d, u_d)$

Tracking Controller: $u = u_d + K(x - x_d)$

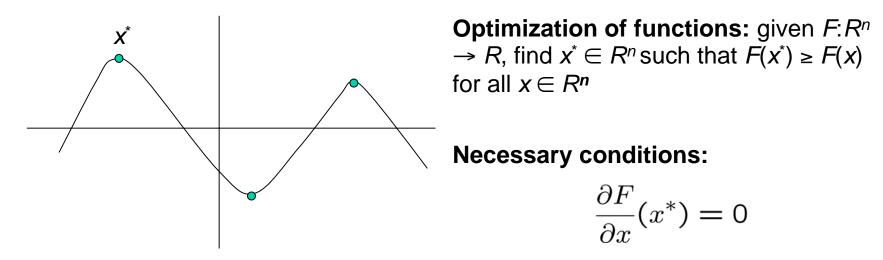
Approach: optimal control

- Find trajectory that minimizes desired cost function and satisfies the (nonlinear) dynamics
- Use linear state feedback (*K*) that minimizes quadratic criteria

Modern variation: receding horizon control

• Resolve trajectory generation in real-time, based on current state

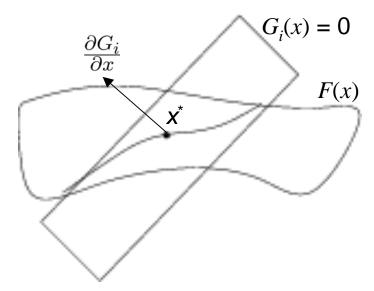
Review: Optimization



Remarks:

- Basic idea: if gradient is non-zero, move in that direction to increase cost
- Conditions are not sufficient conditions: all marked points satisfy conditions, only one is (global) maximum
- To find the *minimum* of a function *F*, find the maximum of the function $-F \Rightarrow$ conditions are unchanged (so we will switch back and forth...)
- MATLAB: X = FMINSEARCH(FUN, X0) starts at X0 and attempts to find a local minimizer X of the function FUN

Constrained Optimization



Optimization with *constraints***:** given cost function $F:\mathbb{R}^n \to \mathbb{R}$ and constraints $G_i:\mathbb{R}^n \to \mathbb{R}$, i = 1, ..., k, find $x^* \in \mathbb{R}^n$ such that $G_i(x^*) = 0$ (satisfies constraints) and $F(x^*) \ge F(x)$ for all x such that $G_i(x) = 0$.

Necessary conditions

$$\frac{\partial F}{\partial x}(x^*) + \sum_{i=1}^k \lambda_i \frac{\partial G_i}{\partial x}(x^*) = 0$$

Lagrange multipliers: λ_i

- Geometric interpretation: free variables that "cancel" the gradient of *F* in directions normal to the constraint
- Algebraic interpretation: minimize the function $\tilde{F} = F + \sum \lambda_i G_i$ with respect to *x*, leaving λ free. Variables λ can take any value \Rightarrow need to choose *x* such that G(x) = 0 (otherwise, we can choose λ to generate a large cost)

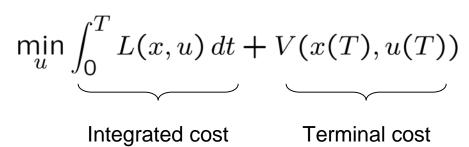
MATLAB: use Optimization Toolbox

Optimal Control

Problem Statement: Given nonlinear system

 $\dot{x} = f(x, u)$ $x \in \mathbb{R}^n, u \in \mathbb{R}^m$

Find trajectory (x^*, u^*) that satisfies the dynamics and minimizes cost



Remarks

- Usually assume we are trying to take system to the origin (x = 0); easy to generalize by rewriting dynamics in terms of write e = x - r
- Integrated cost L(x,u) is used to tradeoff state error (x) from input cost (u)
- Typical cost function: quadratic cost

$$J = \frac{1}{2} \int_0^T \left(x^T Q x + u^T R u \right) dt + x^T (T) P_1 x(T)$$

4 Jan 06

R. M. Murray, Caltech

Pontryagin's Maximum Principle

System:

$$\dot{x} = f(x, u) \ x = \mathbb{R}^n$$

 $x(0) \text{ given } u \in \Omega \subset \mathbb{R}^p$

Hamiltonian: $H = L + \lambda^T f = L + \sum \lambda f$

Cost:
 $J = \int_0^T L(x, u) dt + V(x(T))$
 $\psi(x(T)) = 0$

Terminal constraint (optional)

Hamiltonian: $H = L + \lambda^T f = L + \sum \lambda_i f_i$

Theorem (Pontryagin): If (x^*, u^*) is optimal, then there exists $\lambda^*(t)$ and v^* such that

$$\dot{x}_{i} = \frac{\partial H}{\partial \lambda_{i}} \qquad -\dot{\lambda}_{i} = \frac{\partial H}{\partial x_{i}} \qquad x(0) \text{ given, } \psi(x(T)) = 0 \\ \lambda(T) = \frac{\partial V}{\partial x}(x(T)) + \frac{\partial \psi^{T}}{\partial x}\nu \qquad \text{Boundary conditions} (2n \text{ total})$$

and

$$H(x^*(t), u^*(t), \lambda^*(t)) \leq H(x^*(t), u, \lambda^*(t)) \quad \forall \quad u \in \Omega$$

Remark: this is a very general (and useful) set of conditions

R. M. Murray, Caltech

Using the Maximum Principle

1. Formulate problem in standard form:

$$\dot{x} = f(x, u) \ x = \mathbb{R}^n \qquad \qquad J = \int_0^T L(x, u) \, dt + V(x(T))$$

x(0) given $u \in \Omega \subset \mathbb{R}^p \qquad \qquad \psi(x(T)) = 0$

2. Construct Hamiltonian: $H = L + \lambda^T f = L + \sum \lambda_i f_i$

3. Compute necessary conditions:

$$\dot{x}_i = \frac{\partial H}{\partial \lambda_i}$$
 $-\dot{\lambda}_i = \frac{\partial H}{\partial x_i}$ $x(0) \text{ given, } \psi(x(T)) = 0$
 $\lambda(T) = \frac{\partial V}{\partial x}(x(T)) + \frac{\partial \psi^T}{\partial x}\nu$

4. Find the optimal input

$$u = \arg \min H(x^*(t), u, \lambda^*(t))$$

5. Solve for the optimal trajectory:

- Substitute optimal input into necessary conditions and solved boundary value problem. In general, this is hard to do in closed form
- Good news: can convert this to a computational problem

Example: Bang-Bang Control

1. Problem formulation: move to origin in minimum amount of time

$$\dot{x} = Ax + Bu \qquad |u| \le 1 \qquad \underset{\text{bounded input}}{\leftarrow} \text{Linear dynamics,} \qquad x(0)$$

$$J = \int_0^T 1 \, dt \qquad \underset{\text{bounded input}}{\leftarrow} \text{Minimum time (make T small)} \qquad \underset{\psi(x(T)) = x(T)}{\leftarrow} \text{Terminal constraint}$$

2. Construct Hamiltonian: $H = L + \lambda^T f(x, u) = 1 + (\lambda^T A)x + (\lambda^T B)u$

3, 4. Compute necessary conditions and optimal input:

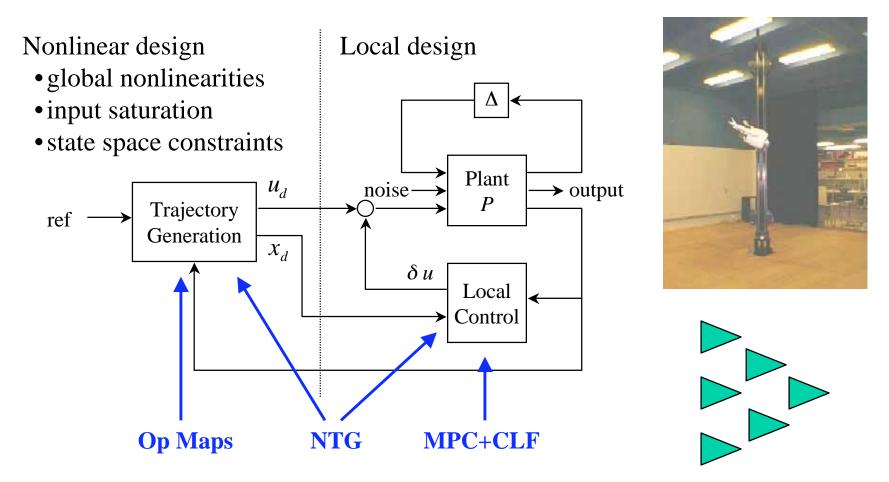
 $\dot{x} = \frac{\partial H}{\partial \lambda} = Ax + Bu \quad \longleftarrow \quad \text{Returns a copy of the dynamics}$ $-\dot{\lambda} = \frac{\partial H}{\partial x} = A^T \lambda \quad \longleftarrow \quad \text{Evolution of Lagrange multipliers (costates)}$ $u = \arg \min H = -\text{sgn}(\lambda^T B) \quad \longleftarrow \quad \text{Optimal input}$

Remarks:

- Form of the solution is easy: apply max (or min) input at all times
- Finding *actual* trajectory is hard: need to search over switching times

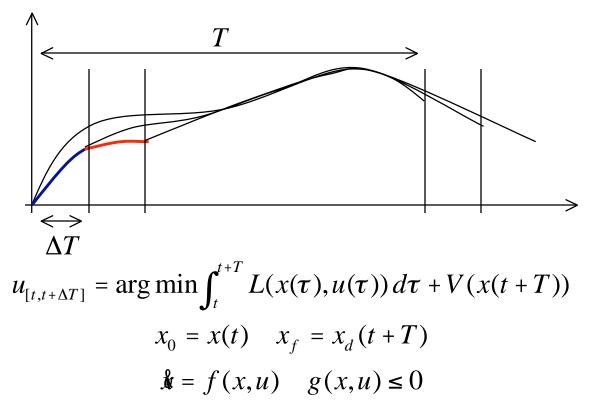
 $\langle \mathbf{n} \rangle$

Application: Ducted Fan (flight control)



- Use real-time trajectory generation to construct (suboptimal) feasible trajectories
- Use model predictive control for *reconfigurable* tracking & robust performance
- Extension to multi-vehicle systems performing cooperative tasks

Approach: Receding Horizon Optimization



Online control customization

- System: f(x,u)
- Constraints/environment: g(x,u)
- Mission: L(x,u)

Update in real-time to achieve *reconfigurable* operation

Real-Time Trajectory Generation / Optimization

$$\mathbf{\hat{x}} = f(x, u)$$

Collocation

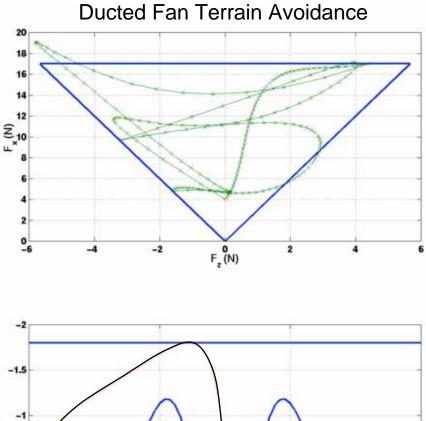
$$(x,u) = \sum \alpha_i \psi^i(t)$$
$$\mathbf{\hat{x}}(t_i) = f(x(t_i), u(t_i))$$

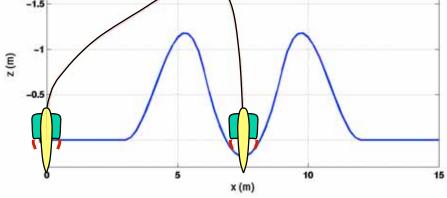
Flatness

$$z = z(x, u, \mathbf{a}, \mathbf{K}, u^{(p)})$$
$$x = x(z, \mathbf{a}, \mathbf{K}, z^{(q)})$$
$$u = u(z, \mathbf{a}, \mathbf{K}, z^{(q)})$$
$$z = \sum \alpha_i \psi^i(t)$$

Quasi-collocation

$$y = h(x)$$
$$(x, u) = \Gamma(y, \mathcal{Y}, \mathsf{K}, y^{(q)})$$
$$0 = \Phi(y, \mathcal{Y}, \mathsf{K}, y^{(p)})$$





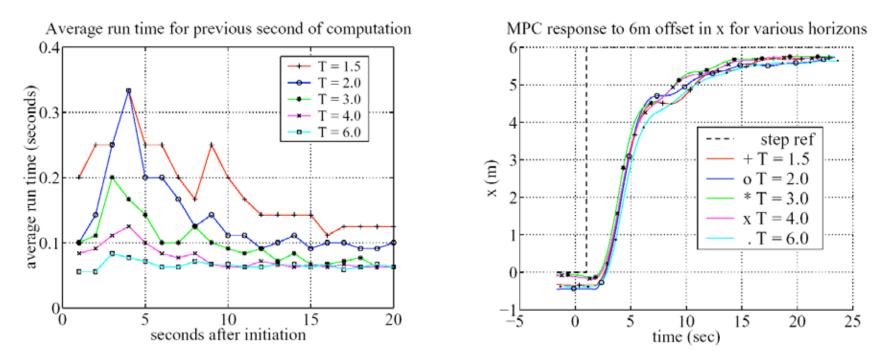
4 Jan 06

R. M. Murray, Caltech

Experimental Results: Caltech Ducted Fan

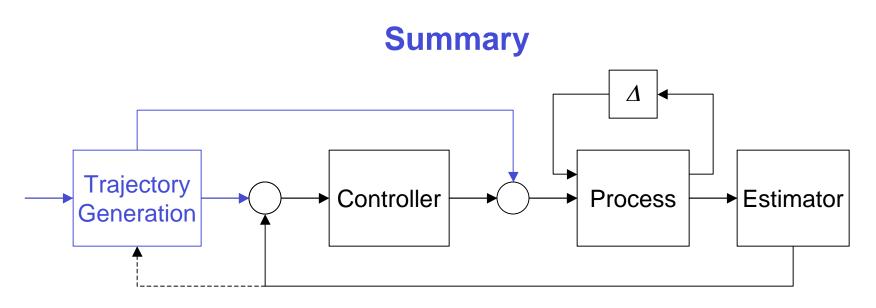


Experiments: Caltech Ducted Fan



Real-Time MPC on Caltech Ducted Fan (Aug 01)

- NTG with quasi-flat outputs + Lyapunov CLF
- Average computation time of ~100 msec
- Inner (pitch) loop closed using local control law; MPC for position variables
- Inner/outer tradeoff: how much can be pushed into optimization



Optimal Control for Trajectory Generation

- Find feasible, optimal trajectories for a (nonlinear) control system
- Necessary conditions: Pontryagin Maximum Principle

Homework

• Work through several examples of maximum principle

Next week: application of optimal control to design state feedback

Note: NO CLASS MONDAY - next regular class on Wed, 11 Jan, 1:30 pm Course Project information meeting: Friday, 2-3 pm, 125 Steele