Chapter 7
Loopshaping

This chapter presents a graphical technique for designing a controller to achieve robust performance
for a plant that is stable and minimum-phase.

7.1 The Basic Technique of Loopshaping

Recall from Section 4.3 that the robust performance problem is to design a proper controller C' so
that the feedback system for the nominal plant is internally stable and the inequality

[IWLS] + [WoT [l <1 (7.1)

is satisfied. Thus the problem input data are P, Wi, and Wj; a solution of the problem is a
controller C' achieving robust performance.

We saw in Chapter 6 that the robust performance problem is not always solvable—the tracking
objective may be too stringent for the nominal plant and its associated uncertainty model. Un-
fortunately, constructive (necessary and sufficient) conditions on P, Wi, and Wy for the robust
performance problem to be solvable are unknown.

In this chapter we look at a graphical method that is likely to provide a solution when one exists.
The idea is to construct the loop transfer function L to achieve (7.1) approximately, and then to
get C via C = L/P. The underlying constraints are internal stability of the nominal feedback
system and properness of C, so that L is not freely assignable. When P or P~! is not stable, L
must contain P’s unstable poles and zeros (Theorem 3.2), an awkward constraint. For this reason,
we assume in this chapter that P and P~! are both stable.

In terms of Wy, W, and L the robust performance inequality is

Wi (jw)
1+ L(jw)

W3 (jw)L(jw)

T+ L(w) < 1. (7.2)

I'jw) =

This must hold for all w. The idea in loopshaping is to get conditions on L for (7.2) to hold, at
least approximately. It is convenient to drop the argument jw.
We are interested in alternative conditions under which (7.2) holds. Recall from Section 6.1
that a necessary condition is
min{|[W|, [Wa[} <1,

so we will assume this throughout. Thus at each frequency, either |W7| < 1 or |[Ws| < 1. We will
consider these two cases separately and derive conditions comparable to (7.2).
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We begin by noting the following inequalities, which follow from the definition of I:

(|W1] — [Wa])|S| + [Wa| < T < (JWi] + [Wa|)|S] + |Wa, (7.3)
([Wa| — |Wi)IT| + |Wi| < T < (|[Wal| + [WA|)|T| + |[W1, (7.4)
|Wh| + |[Wa L] |W1| + |Wa L]
e e 2 (7.5)
1+ |L] |1 —|L]|

e Suppose that [Wz| < 1. Then from (7.3)

[W1| + [Wo
<l < ————|5|<1, 7.6
[W1| — [Wq
<l = ———|5|<1. 7.7
Or, in terms of L, from (7.5)
Wi +1
<1 < |[|> 21T 7.8
Wi -1
I'<l = |L|> ————. 7.9

When |W;| > 1, the conditions on the right-hand sides of (7.6) and (7.7) approach each other,
as do those in (7.8) and (7.9), and we may approximate the condition I" < 1 by

W]
———|5| <1 7.10
or | |
L[l
Ll > ———. 7.11

Notice that (7.10) is like the nominal performance condition |W1S| < 1 except that the
weight W is increased by dividing it by 1 — |W53|: Robust performance is achieved by nominal
performance with a larger weight.

Now suppose that |[W;]| < 1. We may proceed similarly to obtain from (7.4)

|Wa| + |W]
r<1 W2l Wil p) <
[Wa| — [WA|
I'<l — ——|T|<1
or from (7.5)
1 — W]
P<l « |[|]<—14
| | |W2|+1
1 — W]

'<l = || < =——.



7.1. THE BASIC TECHNIQUE OF LOOPSHAPING 95

When |[W5| > 1, we may approximate the condition I' < 1 by

|Wa|
— T/ <1 7.12
. 1w
— W1
L < —————. 7.13
Inequality (7.12) says that robust performance is achieved by robust stability with a larger
weight.

The discussion above is summarized as follows:

(W]
W 1 % L
1— W
W 1 % L < —————

For example, the first row says that over frequencies where |W;| > 1 > |W3| the loopshape should

satisfy
W
|L| > Q
1 — Wy
Let’s take the typical situation where |W(jw)| is a decreasing function of w and |Ws(jw)| is an
increasing function of w. Typically, at low frequency

Wil > 1> Wy

and at high frequency
|W1| <1< |W2|

A loopshaping design goes very roughly like this:
1. Plot two curves on log-log scale, magnitude versus frequency: first, the graph of

|W|

1 —[Ws|
over the low-frequency range where |IWW;| > 1 > |Ws|; second, the graph of

1 —|Wy|

|[Wal
over the high-frequency range where |Wi| <1 < |[Ws|.

2. On this plot fit another curve which is going to be the graph of |L|: At low frequency let it lie
above the first curve and also be > 1; at high frequency let it lie below the second curve and
also be < 1; at very high frequency let it roll off at least as fast as does |P| (so C' is proper);
do a smooth transition from low to high frequency, keeping the slope as gentle as possible

near crossover, the frequency where the magnitude equals 1 (the reason for this is described
below).

3. Get a stable, minimum-phase transfer function L whose Bode magnitude plot is the curve
just constructed, normalizing so that L(0) > 0.



96 CHAPTER 7. LOOPSHAPING

103

L

102

10t

100

101

102

T ] T T R AT TR A AR R R A RTT R R IR RTT
102 101 100 101 102 103 104

Figure 7.1: Bode plots of |L| (solid), |Wi|/(1 — [Wa|) (dash), and (1 — |Wy|)/|W2]| (dot).

Typical curves are as in Figure 7.1. Such a curve for |L| will satisfy (7.11) and (7.13), and hence
(7.2) at low and high frequencies. But (7.2) will not necessarily hold at intermediate frequencies.
Even worse, L may not result in nominal internal stability. If L(0) > 0 and |L| is as just pictured
(i.e., a decreasing function), then the angle of L starts out at zero and decreases (this follows
from the phase formula to be derived in the next section). So the Nyquist plot of L starts out
on the positive real axis and begins to move clockwise. By the Nyquist criterion, nominal internal
stability will hold iff the angle of L at crossover is greater than 180° (i.e., crossover occurs in the
third or fourth quadrant). But the greater the slope of |L| near crossover, the smaller the angle
of L (proved in the next section). So internal instability is unavoidable if |L| drops off too rapidly
through crossover, and hence in our loopshaping we must maintain a gentle slope; a rule of thumb
is that the magnitude of the slope should not be more than 2. After doing the three steps above we
must validate the design by checking that internal stability and (7.2) both hold. If not, we must
go back and try again. Loopshaping therefore is a craft requiring experience for mastery.

7.2 The Phase Formula (Optional)

It is a fundamental fact that if L is stable and minimum-phase and normalized so that L(0) > 0,
then its magnitude Bode plot uniquely determines its phase plot. The normalization is necessary,
for
1 -1
and
s+1 s+1

are stable, minimum-phase, and have the same magnitude plot, but they have different phase plots.
Our goal in this section is a formula for ZL in terms of |L|.
Assume that L is proper, L and L' are analytic in Res > 0, and L(0) > 0. Define G := In L.
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Then
ReG =In|L|, ImG = /L,

and G has the following three properties:

1. G is analytic in some right half-plane containing the imaginary axis. Instead of a formal
proof, one way to see why this is true is to look at the derivative of G:

Ll
G =—.

L
Since L is analytic in the right half-plane, so is L'. Then since L has no zeros in the right
half-plane, G’ exists at all points in the right half-plane, and hence at points a bit to the left

of the imaginary axis.
2. ReG(jw) is an even function of w and ImG(jw) is an odd function of w.

3. s71G(s) tends to zero uniformly on semicircles in the right half-plane as the radius tends to
infinity, that is, _
G (Re’?)

TR |

lim sup
R—00 _r/0<<n/2

Proof Since ' ' .
G(Re') = In|L(Re)| + jLL(Re)

and ZL(Re’?) is bounded as R — oo, we have

|In | L(Re’)]|
" :

G (Re’?)
Rei?

Now L is proper, so for some ¢ and k£ > 0,

L(s) ~ — as |s| — oo.

Sk
Thus
G(Rejg) |ln|c/Rk||
Red? R
_|Inje] = kIn|R||
N R
InR
k——
R
— 0.1

Next, we obtain an expression for the imaginary part of G in terms of its real part.

Lemma 1 For each frequency wy

dw.

. 2w ® ReG(jw) — ReG(jw
Im G(]UJO) — T0/0 (.7 w)2 — w2 (.7 0)
0
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Proof Define the function
G(s) — ReG(jwo)  G(s) — ReG(jwo)
s — jwy 5+ jwo

57+ wyj

F(s) :=

= 2jw0

Then F' is analytic in the right half-plane and on the imaginary axis, except for poles at £jwyg.
Bring in the usual Nyquist contour: Go up the imaginary axis, indenting to the right at the points
—jwp and jwg along semicircles of radius r, then close the contour by a large semicircle of radius
R in the right half-plane. The integral of F' around this contour equals zero (Cauchy’s theorem).
This integral equals the sum of six separate integrals corresponding to the three intervals on the
imaginary axis, the two smaller semicircles, and the larger semicircle. Let I; denote the sum of
the three integrals along the intervals on the imaginary axis, I> the integral around the lower small
semicircle, I3 around the upper small semicircle, and I, around the large semicircle. We show that

00 N :
im I, = 2w / ReG(]“’)Z RZG(J“’O)dw, (7.15)
R—o00,r—0 —00 we — Wy
lir%IQ = —nlm G(jwo), (7.16)
T
lir%Ig = —nlm G(jwo), (7.17)
T
lim I, = O (7.18)
R—o0

The lemma follows immediately from these four equations and the fact that ReG(jw) is even.
First,

L = /jF(jw)dw,
where the integral is over the set
[—R,—wo — r]U[-wo + r,wo — r] U [wo + 1, R]. (7.19)
As R — oo and r — 0, this set becomes the interval (—oo,00). Also, from (7.14)

G(jw) — ReG(jwo)

JF (jw) = 2wo

w? — wi '
Since )
Im G(jw)
w? — wi

is an odd function, its integral over set (7.19) equals zero, and we therefore get (7.15).
Second,

L - /”/2 G(—jwo +7’eja).— ReG(jwo)
/2 —jwo + red? — juwg

™2 G(—jwy + re??) — ReG (jwo)
- /7r/2 —jwo + rel? 4+ juwg

jrel®do

jrel?dp.

As r — 0, the first integral tends to 0 while the second tends to

/2

(G (—jwo) — ReG(jwo)]j/ ,40=7Im Gjuo).
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This proves (7.16). Verification of (7.17) is similar.

Finally,
/2 . .
I =— / F(Re'?)jRe/%do,
—m/2
N (G(RE) — ReGi(jiwo)]
2wo|G(Re??) — ReG(jwy
I < . Rr.
| 4| = sup T (Reﬂg)Q-l-wg ™
<<=
27~ 2
Thus »
G(Re!
|I;] — (const) sup [G(RT)] -0
0 R
This proves (7.18). B
Rewriting the formula in the lemma in terms of L we get
2 ® In|L(jw)| — In|L(j
LL(jwo) = ﬂ/ | (]“’)L n2| Gewoll 4, (7.20)
T Jo w? — wj

This is now manipulated to get the phase formula.

Theorem 1 For every frequency wy

1 [ dln|L
LL(jwy) = —/ % lncothudu,

v
T J_so v 2
where the integration variable v = In(w/wy).

Proof Change variables of integration in (7.20) to get

1 [* In|L| - In|L(j
4L(jwo):;/ nlE = n|E(jwo)l ;,

BN sinh v

Note that in this integral In|L| is really In|L(jwpe”)| considered as a function of v. Now integrate
by parts, from —oo to 0 and from 0 to oo:

) 1 i V10
/L(jwy) = —;[(ln|L|—ln|L(]w0)|)lnc0th§0

+l/ dln|L| In coth gdy
0

T dv

]_ _
+~[(ln |L] ~ In|L(jeo)]) In coth 7”]30

1 [ dln|L -
+—/ 2| |lncoth7ydu.

T J_ o v

The first and third terms sum to zero. B

Example Suppose that In|L| has constant slope,

din|L|
dv
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Then _
LL(jwy) = —E/ In coth Md}/ = _CI;
T J-oo 2 2

that is, the phase shift is constant at —90c degrees.

In the phase formula, the slope function d1In|L|/dv is weighted by the function

In coth o =1In

4 w + wo
W — Wy

This function is symmetric about w = wy (In scale on the horizontal axis), positive, infinite at
w = wy, increasing from w = 0 to w = wyp, and decreasing from w = wy to w = co. In this way, the
values of d1n|L|/dv are more heavily weighted near w = wy. We conclude, roughly speaking, that
the steeper the graph of |L| near the frequency wy, the smaller the value of ZL.

7.3 Examples
This section presents three simple examples of loopshaping.

Example 1 In principle the only information we need to know about P right now is its relative
degree, degree of denominator minus degree of numerator. This determines the high-frequency
slope on its Bode magnitude plot. We have to let L have at least equal relative degree or else C' will
not be proper. Assume that the relative degree of P equals 1. The actual plant transfer function
enters into the picture only at the very end when we get C from L via C = L/P.

Take the weighting function W5 to be

s+1
W2(5) = 0000 7 1)
See Figure 7.2 for the Bode magnitude plot. Remember (Section 4.2) that |Wa(jw)| is an upper
bound on the magnitude of the relative plant perturbation at frequency w. For this example, |WW5|
starts at 0.05 and increases monotonically up to 5, crossing 1 at 20 rad/s.

Let the performance objective be to track sinusoidal reference signals over the frequency range
from 0 to 1 rad/s. Let’s not say at the start what maximum tracking error we will tolerate; rather,
let’s see what tracking error is incurred for a couple of loopshapes. Ideally, we would take Wj
to have constant magnitude over the frequency range [0,1] and zero magnitude beyond. Such a
magnitude characteristic cannot come from a rational function. Nevertheless, you can check that
Theorem 4.2 continues to be valid for such Wy; that is, if the nominal feedback system is internally
stable, then
wiS

SR 1, VA
1+ AWLT <4

[WoT oo < 1 and H

iff
[IW1S] + [WaT|leo < 1.

With this justification, we can take

. a, f0<w<1
Wi (jw)| = { 0, else,

where a is as yet unspecified.
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Let’s first try a first-order, low-pass loop transfer function, that is, of the form
b
L(s) =

cs+1°
It is reasonable to take ¢ = 1 so that |L| starts rolling off near the upper end of the operating band
[0,1]. We want b as large as possible for good tracking. The largest value of b so that

1 — W 1
L < = ,  w>20
Ll < |Wa| |Wa|
is 20. So we have 20
L(s) = .
(s) o}

See Figure 7.2. For this L the nominal feedback system is internally stable.
It remains to check what robust performance level we have achieved. For this we choose the

largest value of a so that
a

ol>—2 _ u<1
- [Wa|
The function a
1 — [Wa(jw)|
is increasing over the range [0, 1], while |L(jw)| is decreasing. So a can be got by solving
a
LG = —— .
U= T G

This gives a = 13.15.
Now to verify robust performance, graph the function

(W1 (Gw)S(Gw)| + W2 (jw) T (jw)]

(Figure 7.2). Its maximum value is about 0.92. Since this is less than 1, robust performance
is verified. (We could also have determined as in Section 4.3 the largest a for which the robust
performance condition holds.)

Let’s recap. For the performance weight

. 13.15, if0<w<1
Wi (jw)l = { 0, else,

we can take L(s) = 20/(s+1) to achieve robust performance. The tracking error is then < 1/13.15 =
7.6%.

Suppose that a 7.6% tracking error is too large. To reduce the error make |L| larger over the
frequency range [0, 1]. For example, we could try

s+ 10 20
Lls) = s+1s+1

The new factor, (s+ 10)/(s + 1), has magnitude nearly 10 over [0, 1] and rolls off to about 1 above
10 rad/s. See Figure 7.3. Again, the nominal feedback system is internally stable. If we take W}
as before and compute a again we get a = 93.46. The robust performance inequality is checked
graphically (Figure 7.3). Now the tracking error is < 1/93.46 = 1.07%.

The problem above is quite easy because |W3| is small on the operating band [0, 1]; the require-
ments of performance and robust stability are only weakly competitive.

Example 2 This example examines the pitch rate control of an aircraft. The signals are
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Figure 7.2: Bode plots of |L| (solid), [Ws| (dash), and |Wy S| + |[W2T| (dot).
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Figure 7.3: Bode plots of |L| (solid), [W2| (dash), and |[W1 S| + |WoT| (dot).
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r pitch rate command (by pilot)
u elevator deflection
y pitch rate of the aircraft

Suppose that the first approximation of the plant is

s+1

P(s) = .
) = o x0T <55 15

This would model the rigid motion of the aircraft (i.e., ignoring bending). The natural frequency
is 5 rad/s and the damping ratio 0.7.

Again, rather than specify a performance weight Wi, common practice is to specify a desired
loopshape. The simplest decent loop transfer function is

w
L(s) = £,
where w,, a positive constant, is the crossover frequency, where |L| = 1. The loopshape |L(jw)]

versus w is a straight line (log-log scale) of slope -1.
This is the simplest loopshape having the following features:

1. Good tracking and disturbance rejection (i.e., |S| small) at low frequency.
2. Good robustness (i.e., |T'| small) at high frequency.
3. Internal stability.
In principle, the larger w,, the better the performance, for then |S| is smaller over a wider frequency

range; note that
s

S(s) =

For such L with w, = 10, the controller is

S+ we

2 4+2x0.7x s+ 5%
s(s+1)

C(s) =10

In actuality, there is a limitation on how large w. can be because of high-frequency uncertainty:
remember that we modeled only the rigid body, whereas the actual aircraft is flexible and has
bending modes just as a flexible beam has. Suppose that the first bending mode (the fundamental)
is known to be at approximately 45 rad/s. If we included this mode in the transfer function P,
there would be a pole in the left half-plane near the point s = 455 on the imaginary axis. This
would mean in turn that | P(jw)| would be relatively large around w = 45. For the controller above,
the loopshape could then take the form in Figure 7.4. Since the magnitude is greater than 1 at
45 rad/s, the feedback system is potentially unstable, depending on the phase at 45 rad/s.

The typical way to accommodate such uncertainty is to ensure for the nominal plant model
that |L| is sufficiently small, starting at the frequency where appreciable uncertainty begins. For
example, we might demand that

|L(jw)| < 0.5, Vw > 45.

(We have implicitly just defined a weight W5.) The largest value of w. satisfying this condition is
we = 45/2.
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Figure 7.4: Loopshape, Example 2.

Example 3 Consider the plant transfer function

s+1 s2 42 x0.05 x 30s + 302

P(s) = .
() = o X 07 xBs £ 52 522 x 0.01 x 455 4 452

This is an extension of the model of Example 2, with the first bending mode at 45 rad/s included.
This mode is very lightly damped, with damping ratio 0.01. This frequency and damping ratio will
have associated uncertainty, typically 2 to 3%. Also included in P is an additional pair of lightly
damped zeros. The magnitude Bode plot of P is in Figure 7.5. Suppose that the desired loop
transfer function is again L(s) = w./s. This would require that C' = L/P have the factor

s +2 % 0.01 x 455 + 452

in its numerator, that is, C' would be like a notch filter with a very deep notch. But since, as stated
above, the numbers 45 and 0.01 are uncertain, a more prudent approach is to have a shallower
notch by setting L to be, say,

_ we $2+2x0.03 x 4bs 4 45

L(s) = ¢ .
) = T 2% 0.01 x 455 + 452

With the same rationale as in Example 2, we now maximize w. such that
|L(jw)| < 0.5, Vw > 45.
This yields w. =~ 8 and the loopshape in Figure 7.6. The controller is

$24+2x0.7x5s+5% s24+2x0.03 x 455 + 452

C(s) =8 .
() s(s + 1) s2+ 2 x 0.05 x 305 + 302
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Figure 7.5: Bode plot of |P|, Example 3.
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Figure 7.6: Loopshape, Example 3.
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Exercises

1. This problem concerns the plant in Example 2 in Section 4.1—the double integrator with an

uncertain time delay. Take
1

(s +0.01)2"

(This is supposed to be a stable approximation to the double integrator.) The time delay was
accommodated by embedding the plant in a multiplicative perturbation with weight

P(s) =

0.1s

Wals) = goms 11

To get good tracking over the frequency range [0,1], a typical choice for W; would be a
Butterworth filter with cutoff of 1 rad/s. To get at most 10% tracking error on the operating
band, we would take the gain of the filter to be 10. A third-order such filter is

10
s3 4252425 +1°

Wi(s) =

For these data, design a controller to achieve robust performance.

2. Repeat the design in Example 1, Section 7.3, but with

10s +1
Wa(s) = 7.
2(%) = 30015 1 1)
This is more difficult because |W5| is fairly substantial on the operating band. See what
performance level ¢ you can achieve.

3. Consider the plant transfer function

—s+ 16

P = o

This is unstable and non-minimum-phase, and loopshaping is consequently difficult for it.
But try the loop transfer function
we —S+16 s+ 6 1

Lis) = ¢ .
)= —16 56 00015 1

This contains the unstable pole and zero of P, as it must for internal stability; it has relative
degree 1, as it must for C' to be proper; and it equals approximately —w,/s for low frequency.
Compute w, to minimize ||S]|s. Compute the resulting magnitude Bode plot of S and T'.

Notes and References

The technique of loopshaping was developed by Bode for the design of feedback amplifiers (Bode,
1945), and subsequently Bower and Schultheiss (1961) and Horowitz (1963) adapted it for the
design of control systems. The latter two references concentrate on particularly simple loopshaping
techniques, namely, lead and lag compensation. Loopshaping and the root-locus method are the
primary ones used today in practice for single-loop feedback systems. The phase formula is due to
Bode. Exercise 3 is based on a simplified analysis of the X-29 experimental airplane (Enns 1986).
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