Chapter 6

Design Constraints

Before we see how to design control systems for the robust performance specification, it is useful
to determine the basic limitations on achievable performance. In this chapter we study design
constraints arising from two sources: from algebraic relationships that must hold among various
transfer functions; from the fact that closed-loop transfer functions must be stable (i.e., analytic in
the right half-plane). It is assumed throughout this chapter that the feedback system is internally
stable.

6.1 Algebraic Constraints

There are three items in this section.

1. The identity S + T = 1 always holds. This is an immediate consequence of the definitions
of S and T. So in particular, |S(jw)| and |T'(jw)| cannot both be less than 1/2 at the same
frequency w.

2. A necessary condition for robust performance is that the weighting functions satisfy

min{[Wy (jw)], [W2(jw)|} <1, Vw.

Proof Fix w and assume that |W;| < |Ws| (the argument jw is suppressed). Then

|W1| [W1(S +T)|
(WLS| + [WAT|
W.S| + |WoT|.

<
<

So robust performance (see Theorem 4.2), that is,
[W1S] + [WT ||l < 1,
implies that |W;| < 1, and hence
min{|W1|,|Ws|} < 1.
The same conclusion can be drawn when |[Ws| < |[W;|. R
So at every frequency either |Wi| or |W3| must be less than 1. Typically, |W(jw)| is monoton-

ically decreasing—for good tracking of low-frequency signals—and |W5(jw)| is monotonically
increasing—uncertainty increases with increasing frequency.
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80 CHAPTER 6. DESIGN CONSTRAINTS

3. If pis a pole of L in Res > 0 and z is a zero of L in the same half-plane, then

Tp) =1, T(z)=0. (6.2)
These interpolation constraints are immediate from the definitions of S and T'. For example,
1 1
Sp)=—7—=—=0.
P) =170 ~ =

6.2 Analytic Constraints

In this section we derive some constraints concerning achievable performance obtained from analytic
function theory. The first subsection presents some mathematical preliminaries.

Preliminaries

We begin with the following fundamental facts concerning complex functions: the maximum mod-
ulus theorem, Cauchy’s theorem, and Cauchy’s integral formula. These are stated here for conve-
nience.

Maximum Modulus Theorem Suppose that Q is a region (nonempty, open, connected set) in
the complex plane and F is a function that is analytic in Q. Suppose that F is not equal to a
constant. Then |F| does not attain its mazimum value at an interior point of .

A simple application of this theorem, with €2 equal to the open right half-plane, shows that for
FinS

|Fllc = sup |F(s)].
Res>0

Cauchy’s Theorem Suppose that Q) is a bounded open set with connected complement and D is
a non-self-intersecting closed contour in Q. If F is analytic in ), then

}é) F(s)ds = 0.

Cauchy’s Integral Formula Suppose that F' is analytic on a non-self-intersecting closed contour
D and in its interior 2. Let sg be a point in Q. Then

F(s0) = ! ]g) Fls) ds.

ﬁj S — 8o

We shall also need the Poisson integral formula, which says that the value of a bounded analytic
function at a point in the right half-plane is completely determined by the coordinates of the point
together with the values of the function on the imaginary axis.

Lemma 1 Let F be analytic and of bounded magnitude in Res > 0 and let so = o¢+ jwo be a point
in the complex plane with o9 > 0. Then

F(so) = - /oo Pliw)——2 .
T ) oo 03 + (w — wp)?
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Proof Construct the Nyquist contour D in the complex plane taking the radius, r, large enough
so that the point s¢ is encircled by D.
Cauchy’s integral formula gives
1 F
F(s9) = ]{ ﬂds.
D

ﬁj S — S0

Also, since —3p is not encircled by D, Cauchy’s theorem gives

1 F
o= L 0,
2mj Jp s+3So

Subtract these two equations to get

o L 5 S0 + Sp s
Flso) = 2m] ?é)F( )(3 —s0)(s +§0)d '

Thus
F(so) = I + I,
where
1/’" . ol
L = — F(jw — —dw
' ™), G )(So—Jw)(SO + jw)
1 T (o))
= = F(jw)——————dw,
R ey
1 71'/2 . .
I, = —/ F(re?) 3 0 T rjel’de.
) J—n/2 (re?? — so)(re?? + )
Asr — o

A /oo F(jw) 0 d
- w)——————=dw.
L J 03 4 (w — wy)?
So it remains to show that I — 0 as r — oo.
We have

o0 1 [m? 1
I < —||F|lso— . . de.
S M e e

The integral

/2 1
/ j0 1|pj0 13 1 df
r/2 70 — sor=1|[e7? + Sor |

converges as r — oo. Thus

1
I, < constant x —,
r

which gives the desired result. B
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Bounds on the Weights W; and W,

Suppose that the loop transfer function L has a zero z in Res > 0. Then
IW1Sloo > [W1(2)]- (6.3)
This is a direct consequence of the maximum modulus theorem and (6.1):

(Wi(2)| = [Wi(2)S(2)| < sup [Wi(s)S(s)] = [[W1S]lco-
Res>0

So a necessary condition that the performance criterion ||W1S||sc < 1 be achievable is that the
weight satisfy |W1(z)| < 1. In words, the magnitude of the weight at a right half-plane zero of P
or C' must be less than 1.

Similarly, suppose that L has a pole p in Res > 0. Then

IWaT||oo = [W2(p)l, (6.4)

so a necessary condition for the robust stability criterion |W2T ||~ < 1 is that the weight W5 satisfy
[Wa(p)| < 1.

All-Pass and Minimum-Phase Transfer Functions

Two types of transfer functions play a critical role in the rest of this book: all-pass and minimum-
phase. A function in S is all-pass if its magnitude equals 1 at all points on the imaginary axis.
The terminology comes from the fact that a filter with an all-pass transfer function passes without
attenuation input sinusoids of all frequencies. It is not difficult to show that such a function has
pole-zero symmetry about the imaginary axis in the sense that a point sg is a zero iff its reflection,
—3S0, is a pole. Consequently, the function being stable, all its zeros lie in the right half-plane. Thus
an all-pass function is, up to sign, the product of factors of the form

S — 8o
s+ 5o

, Resp > 0.

Examples of all-pass functions are

s—1 $2—s42
s+1° 24542

)

A function in § is minimum-phase if it has no zeros in Res > 0. This terminology can be
explained as follows. Let G be a minimum-phase transfer function. There are many other transfer
functions having the same magnitude as G, for example F'G where F' is all-pass. But all these other
transfer functions have greater phase. Thus, of all the transfer functions having G's magnitude, the
one with the minimum phase is G. Examples of minimum-phase functions are

1 1 S s+2
Toos+1 s4+17 s24s5417

It is a useful fact that every function in S can be written as the product of two such factors:

4(s—2) [s-2 4(s +2)
$24+s+1 \s+2 s24s+1)"°

for example
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Lemma 2 For each function G' in S there exist an all-pass function Gop and a minimum-phase
function Gy such that G = GopGrp. The factors are unique up to sign.

Proof Let G, be the product of all factors of the form

S — 8o
s+35p

where s( ranges over all zeros of G in Res > 0, counting multiplicities, and then define

G

Gnp = G

The proof of uniqueness is left as an exercise. B

For technical reasons we assume for the remainder of this section that L has no poles on the
imaginary axis. Factor the sensitivity function as

S = SupSmp.

Then S,,, has no zeros on the imaginary axis (such zeros would be poles of L) and S,,, is not
strictly proper (since S is not). Thus S;wl, €S.

As a simple example of the use of all-pass functions, suppose that P has a zero at z with z > 0, a
pole at p with p > 0; also, suppose that C' has neither poles nor zeros in the closed right half-plane.
Then

s—z
s+ z

-
Sap(s) = i L Tup(s) =

s+
It follows from the preceding section that S(z) = 1, and hence

Smp(2) = Sap(2) ™! = jti
Similarly,
To(p) = Tuplp) ' = 22,
Then
IW1Slloo = IW1Sumplloe = [W1(2)Somp(2)] = \Wﬂz)i fﬁ\
and

p+z
p—z
Thus, if there are a pole and zero close to each other in the right half-plane, they can greatly
amplify the effect that either would have alone.

Wl > ‘WZ(P)

Example These inequalities are effectively illustrated with the cart-pendulum example of Sec-
tion 5.7. Let P(s) be the u-to-z transfer function for the up position of the pendulum, that is,

s> —g

Pls) = s2[Mls? — (M +m)g]
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Define the ratio r := m/M of pendulum mass to cart mass. The zero and pole of P in Res > 0 are

z:\/%, p=2zvV1+r.

Note that for r fixed, a larger value of | means a smaller value of p, and this in turn means that
the system is easier to stabilize (the time constant is slower). The foregoing two inequalities on
IW1S||s and ||[WoT || apply. Since the cart-pendulum is a stabilization task, let us focus on

p+z
p—2z

IWaT oo > ‘WZ(P) | (6.5)

The robust stabilization problem becomes harder the larger the value of the right-hand side of
(6.5). The scaling factor in this inequality is

V1 1
ptz _ +r+ (6.6)

p—z Vitr—1

This quantity is always greater than 1, and it approaches 1 only when r approaches oo, that is,
only when the pendulum mass is much larger than the cart mass. There is a tradeoff, however,
in that a large value of 7 means a large value of p, the unstable pole; for a typical Wy (high-pass)
this in turn means a relatively large value of |W5(p)| in (6.5). So at least for small uncertainty, the
worst-case scenario is a short pendulum with a small mass m relative to the cart mass M.

In contrast, the u-to-y transfer function has no zeros, so the constraint there is simply
IWT ||oo > [Wa(p)].

If robust stabilization were the only objective, we could achieve equality by careful selection of
the controller. Note that for this case there is no apparent tradeoff in making m/M large. The
difference between the two cases, measuring z and measuring y, again highlights the important fact
that sensor location can have a significant effect on the difficulty of controlling a system or on the
ultimate achievable performance.

Some simple experiments can be done to illustrate the points made in this example. Obtain
several sticks of various lengths and try to balance them in the palm of your hand. You will notice
that it is easier to balance longer sticks, because the dynamics are slower and p above is smaller.
It is also easier to balance the sticks if you look at the top of the stick (measuring y) rather than
at the bottom (measuring z). In fact, even for a stick that is easily balanced when looking at the
top, it will be impossible to balance it while looking only at the bottom. There is also feedback
from the forces that your hand feels, but this is similar to measuring x.

The interested reader may repeat the analysis for the down position of the pendulum. At this
point it is useful to include the following lemma which will be used subsequently.

Lemma 3 For every point so = o9 + jwo with og > 0,

1 [ . 00
—00 0
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Proof Set F(s) := InSy,;(s). Then F' is analytic and of bounded magnitude in Res > 0. (This
follows from the properties S, S;ql] € §; the idea is that since S, has no poles or zeros in the
right half-plane, In S,,,, is well-behaved there.) Apply Lemma 1 to get

Fiso) = 1 [ Flje) 2
s0) = — W) —dw.
A J 03 + (w — wp)?
Now take real parts of both sides:
1 [ 09
ReF'(sg) = — ReF(jw)—————dw. 6.7
60 = [ ReFGo) 2 (67
But
S _ eF _ eReFejImF
mp — = )
S0
|Smp| — eReF,
that is,
In|Spp| = ReF.

Thus from (6.7)

]S (s0)| = 5 [ WlSipl)| 2

n s0)| = — n W) —————=duw,

mp\>0 ) mp\J Ug + (UJ _ w0)2
or since |S| = |Sp,| on the imaginary axis,
1 [ oo
In | Sy (s :—/ In|S(jw)|5——=dw.
| mp( 0)| T | (.7 )|ag+(w—w0)2

Finally, since logz = logeln z, the result follows upon multiplying the last equation by loge. B

The Waterbed Effect

Consider a tracking problem where the reference signals have their energy spectra concentrated in
a known frequency range, say w1, ws]. This is the idealized situation where W7 is a bandpass filter.
Let M; denote the maximum magnitude of S on this frequency band,

My := max 1S(Gw)l,
and let My denote the maximum magnitude over all frequencies, that is, ||S||». Then good tracking
capability is characterized by the inequality M; < 1. On the other hand, we cannot permit My
to be too large: Remember (Section 4.2) that 1/Ms equals the distance from the critical point to
the Nyquist plot of L, so large Ms means small stability margin (a typical upper bound for M,
is 2). Notice that My must be at least 1 because this is the value of S at infinite frequency. So
the question arises: Can we have M; very small and Ms not too large? Or does it happen that
very small M; necessarily means very large M>? The latter situation might be compared to a
waterbed: As |S| is pushed down on one frequency range, it pops up somewhere else. It turns out
that non-minimum-phase plants exhibit the waterbed effect.

Theorem 1 Suppose that P has a zero at z with Rez > 0. Then there exist positive constants cy
and cz, depending only on w1, we, and z, such that

c1 log My + ¢olog Mo > log |Sap(z)_1| > 0.
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Proof Since z is a zero of P, it follows from the preceding section that S(z) = 1, and hence
Sup(2) = Sap(2) L. Apply Lemma 3 with

So =2 =09+ Jjwp

to get
o0

_ L[ :
log S0y () ! = - [ toglS(w)] o

—00 o) + (UJ - w0)2
Thus
log |Sap(2) 7| < 1 log My + c; log My,

where ¢; is defined to be the integral of
1 o)
mod + (w— wp)?
over the set
[—wa, —w1] U w1, wo]

and ¢y equals the same integral but over the complementary set.
It remains to observe that |Sy,(2)| < 1 by the maximum modulus theorem, so

10g |Sap(2)~! > 0. W

Example As an illustration of the theorem consider the plant transfer function
s—1
(s +1)(s —p)

where p > 0, p # 1. As observed in the preceding section, S must interpolate zero at the unstable
poles of P, so S(p) = 0. Thus the all-pass factor of S must contain the factor

P(s) =

)

S—p
s+p'

that is,

Supls) = G 5)

for some all-pass function G. Since |G(1)| < 1 (maximum modulus theorem), there follows

l-p
1Sup(1)] < ‘—‘

1+p

So the theorem gives

1
c1 log My + co log Mo > log‘%‘.

Note that the right-hand side is very large if p is close to 1. This example illustrates again a general
fact: The waterbed effect is amplified if the plant has a pole and a zero close together in the right
half-plane. We would expect such a plant to be very difficult to control.

It is emphasized that the waterbed effect applies to non-minimum-phase plants only. In fact,
the following can be proved (Section 10.1): If P has no zeros in Res > 0 nor on the imaginary axis
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in the frequency range [w1,ws], then for every € > 0 and 0 > 1 there exists a controller C' so that
the feedback system is internally stable, M; < €, and My < §. As a very easy example, take

1

Pls) = s+ 1

The controller C'(s) = k is internally stabilizing for all £ > 0, and then

s+1

5(8)2734—14—]{

So ||S|lec =1 and, for every € > 0 and wo, if k is large enough, then

|IS(jw)| <€, VYw < ws.

The Area Formula

Herein is derived a formula for the area bounded by the graph of |S(jw)| (log scale) plotted as a
function of w (linear scale). The formula is valid when the relative degree of L is large enough.
Relative degree equals degree of denominator minus degree of numerator.

Let {p;} denote the set of poles of L in Res > 0.

Theorem 2 Assume that the relative degree of L is at least 2. Then
| 1015w ld = n(log ) (3 Rep).
0

Proof In Lemma 3 take wp = 0 to get

o0

1 .
o8 |Smplon)| = 1 [ log|S(w)| 52—

dw,
N p

[ee]
/0 log S (jw)|

or equivalently,

™
dw = —log|S, .
g = 5 108 Syl

Multiply by oyp:
2

o . 0p ™
. lOg|S(]UJ)|mdw = EO'[] lOg|Smp(O'0)|.
0

It can be shown that the left-hand side converges to

| 1o 18w
0

as o9 — 00. [The idea is that for very large o the function

i
02 + w?

equals nearly 1 up to large values of w. On the other hand, log|S(jw)| tends to zero as w tends to
00.] So it remains to show that

lim = 10g|Sp(0)| = (loge) (Y Repy). (6.8)
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We can write
S = SapSmp,

Sap(s) = H 5P

5+ D

where

It is claimed that
lim olnS(o) = 0.

o—00

To see this, note that since L has relative degree at least 2 we can write

L(o)%ﬁaso%oo

for some constant ¢ and some integer £ > 2. Thus as 0 — o0
o1nS(0) = —olafl + (o) ~ ~oln (1+ ).
o

Now use the Maclaurin’s series )

ln(l—i—x):x—%—i—--- (6.9)

to get

clnS(o) = —o (i _>

k
o
The right-hand side converges to zero as o tends to oo. This proves the claim.
In view of the claim, to prove (6.8) it remains to show that

. o _
Ull)r{.lo 3 In |[Sap(0) 1” = ZRepz-. (6.10)
Now i i n
o+D; o ]oZ
In(Sqp =In In
( o= =2,
so to prove (6.10) it suffices to prove
lim Z1n | 2225 — Rep,. (6.11)
og—00 2 o — P;

Let p; = 2 + jy and use (6.9) again as follows:

o, |o+DP; o, |1+pot
O |ZPi) Ty |20
2 g — Dj 2 1 —piO'_1
o, (1+zo7 )2+ (yo )
= —In
4 (1—zo 12+ (yo 1)
o _ _ _ _
= Z{ln[(1+$o D2 4 (yo™)?] = In[(1 — zo™H? + (yo 1)2]}
o
= 2T 2 }
et

Letting 0 — oo gives (6.11). W
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Example Take the plant and controller

1

P = GoheT o

C(s) = 10.

The feedback system is internally stable and L has relative degree 2. The plot of |S(jw)|, log scale,
versus w, linear scale, is shown in Figure 6.1. The area below the line |S| = 1 is negative, the area

10t

100

10»1 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Figure 6.1: |S(jw)|, log scale, versus w, linear scale.

above, positive. The theorem says that the net area is positive, equaling

7(log e)(z Rep;) = w(loge).

So the negative area, required for good tracking over some frequency range, must unavoidably be
accompanied by some positive area.

The waterbed effect applies to non-minimum-phase systems, whereas the area formula applies
in general (except for the relative degree assumption). In particular, the area formula does not
itself imply a peaking phenomenon, only an area conservation. However, one can infer a type of
peaking phenomenon from the area formula when another constraint is imposed, namely, controller
bandwidth, or more precisely, the bandwidth of the loop transfer function PC. For example,
suppose that the constraint is

POI< 5, Vo> u,
w
where w; > 1. This is one way of saying that the loop bandwidth is constrained to be < w;. Then

for w > wy
1 1 w?

S| < = .
||_1—|PC’|<1—w—2 w? —1
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Hence

00 00 UJ2
/10g|$’(jw)|dw§/ log ————dw.

2 _
L wi w 1

The latter integral—denote it by I—is finite. This is proved by the following computation:

1 & 1
T A=t

w1
= ! /001 (1 —w™?)d
= o/, VY
= L/OO w2t cw it cw ) dw
10 /,, 2 3
_ 1 ~1 L3 -5
- 1101()(“’1 2x3 T T )

Hence the possible positive area over the interval [wq, 00) is limited. Thus if |S| is made smaller and
smaller over some subinterval of [0,w;], incurring a larger and larger debt of negative area, then
|S| must necessarily become larger and larger somewhere else in [0, w;]. Roughly speaking, with a
loop bandwidth constraint the waterbed effect applies even to minimum-phase plants.

Exercises
1. Prove the statement about uniqueness in Lemma 2.

2. True or false: For every 0 > 1 there exists an internally stabilizing controller such that
1T < 9.

3. Regarding inequality (6.3), the implication is that good tracking is impossible if P has a right
half-plane zero where |W;| is not small. This problem is an attempt to see this phenomenon
more precisely by studying |W1(z)| as a function of z for a typical weighting function. Take
Wi to be a third-order Butterworth filter with cutoff frequency 1 rad/s. Plot

|[W1(0.1 + jw)| versus w

for w going from 0 up to where |IW;| < 0.01. Repeat for abscissae of 1 and 10.

4. Let
s—2

P(s) :4m.

Suppose that C' is an internally stabilizing controller such that
[S]loc = 1.5.
Give a positive lower bound for

S(jw)|.
OSH;J%_II (jw)
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5. Define € := |[W1S|loc and 0 := ||CS||s. So € is a measure of tracking performance, while
0 measures control effort; note that C'S equals the transfer function from reference input r
to plant input. In a design we would like € < 1 and § not too large. Derive the following
inequality, showing that € and 0 cannot both be very small in general: For every point sg
with Resy > 0,

[Wi(s0)] < €+ Wi (s0)P(s0) 5

6. Let w be a frequency such that jw is not a pole of P. Suppose that
e:=|S(jw)| < 1.

Derive a lower bound for |C(jw)| that blows up as € — 0. Conclusion: Good tracking at a
particular frequency requires large controller gain at this frequency.

7. Suppose that the plant transfer function is

1

P = =\
(5) 52 —s+4

We want the controller C' to achieve the following:

internal stability,

|S(jw)| < €for 0 <w < 0.1,
|S(jw)| <2 for 0.1 <w <5,
|S(jw)| <1 for 5 < w < oo.

Find a (positive) lower bound on the achievable e.

Notes and References

This chapter is in the spirit of Bode’s book (Bode, 1945) on feedback amplifiers. Bode showed
that electronic amplifiers must have certain inherent properties simply by virtue of the fact that
stable network functions are analytic, and hence have certain strong properties. Bode’s work was
generalized to control systems by Bower and Schultheiss (1961) and Horowitz (1963).

The interpolation conditions (6.1) and (6.2) were obtained by Raggazini and Franklin (1958).
These constraints on S and 7' are essentially equivalent to the controller parametrization in The-
orem 5.2. Inequality (6.3) was noted, for example, by Zames and Francis (1983). The waterbed
effect, Theorem 1, was proved by Francis and Zames (1984), but the derivation here is due to
Freudenberg and Looze (1985). The area formula, Theorem 2, was proved by Bode (1945) in case
L is stable, and by Freudenberg and Looze (1985) in the general case. An excellent discussion of
performance limitations may be found in Freudenberg and Looze (1988).
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