Chapter 4

Uncertainty and Robustness

No mathematical system can exactly model a physical system. For this reason we must be aware
of how modeling errors might adversely affect the performance of a control system. This chapter
begins with a treatment of various models of plant uncertainty. Then robust stability, stability in
the face of plant uncertainty, is studied using the small-gain theorem. The final topic is robust
performance, guaranteed tracking in the face of plant uncertainty.

4.1 Plant Uncertainty

The basic technique is to model the plant as belonging to a set P. The reasons for doing this were
presented in Chapter 1. Such a set can be either structured or unstructured.
For an example of a structured set consider the plant model

1
s2+as+1°

This is a standard second-order transfer function with natural frequency 1 rad/s and damping ratio
a/2—it could represent, for example, a mass-spring-damper setup or an R-L-C circuit. Suppose
that the constant a is known only to the extent that it lies in some interval [amin, Gmax]- Then the
plant belongs to the structured set

1
P = miaminﬁafamax .

Thus one type of structured set is parametrized by a finite number of scalar parameters (one
parameter, g, in this example). Another type of structured uncertainty is a discrete set of plants,
not necessarily parametrized explicitly.

For us, unstructured sets are more important, for two reasons. First, we believe that all models
used in feedback design should include some unstructured uncertainty to cover unmodeled dynam-
ics, particularly at high frequency. Other types of uncertainty, though important, may or may not
arise naturally in a given problem. Second, for a specific type of unstructured uncertainty, disk
uncertainty, we can develop simple, general analysis methods. Thus the basic starting point for an
unstructured set is that of disk-like uncertainty. In what follows, multiplicative disk uncertainty
is chosen for detailed study. This is only one type of unstructured perturbation. The important
point is that we use disk uncertainty instead of a more complicated description. We do this because
it greatly simplifies our analysis and lets us say some fairly precise things. The price we pay is
conservativeness.
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40 CHAPTER 4. UNCERTAINTY AND ROBUSTNESS

Multiplicative Perturbation

Suppose that the nominal plant transfer function is P and consider perturbed plant transfer func-
tions of the form P = (1 + AW,)P. Here W, is a fixed stable transfer function, the weight, and
A is a variable stable transfer function satisfying ||Al|sc < 1. Furthermore, it is assumed that no
unstable poles of P are canceled in forming P. (Thus, P and P have the same unstable poles.)
Such a perturbation A is said to be allowable.

The idea behind this uncertainty model is that AW is the normalized plant perturbation away
from 1:

Hence if ||Al|oo < 1, then
P(jw)
P(jw)

-1 < |W2(]w)|7 Vw,

so |Wa(jw)| provides the uncertainty profile. This inequality describes a disk in the complex plane:
At each frequency the point P/P lies in the disk with center 1, radius [Ws|. Typically, |[Ws(jw)|
is a (roughly) increasing function of w: Uncertainty increases with increasing frequency. The main
purpose of A is to account for phase uncertainty and to act as a scaling factor on the magnitude
of the perturbation (i.e., |A| varies between 0 and 1).

Thus, this uncertainty model is characterized by a nominal plant P together with a weighting
function W5. How does one get the weighting function W5 in practice? This is illustrated by a few
examples.

Example 1 Suppose that the plant is stable and its transfer function is arrived at by means of
frequency—response experiments: Magnitude and phase are measured at a number of frequencies,
wi,t = 1,...,m, and this experiment is repeated several, say n, times. Let the magnitude-phase
measurement for frequency w; and experiment k£ be denoted (M, ¢;;). Based on these data select
nominal magnitude-phase pairs (M;, ¢;) for each frequency w;, and fit a nominal transfer function
P(s) to these data. Then fit a weighting function Ws(s) so that

Mkej(z)zlc ] )
‘ ]\/i[eml 1‘ < Wo(jwi)|, i=1,...,m; k=1,...,n.

Example 2 Assume that the nominal plant transfer function is a double integrator:
P(s) = —.

(5) =

For example, a dc motor with negligible viscous damping could have such a transfer function. You

can think of other physical systems with only inertia, no damping. Suppose that a more detailed
model has a time delay, yielding the transfer function

and suppose that the time delay is known only to the extent that it lies in the interval 0 < 7 < 0.1.
This time-delay factor exp(—7s) can be treated as a multiplicative perturbation of the nominal
plant by embedding P in the family

{(1+AW2) P : [[Alleo < 1}
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To do this, the weight W5 should be chosen so that the normalized perturbation satisfies

P(jw)

Pljw)

< Wa(jw)l, Vo,

that is,
‘67”‘” - 1‘ < |Wa(jw)|, Vw,T.

A little time with Bode magnitude plots shows that a suitable first-order weight is

0.21s

Wols) = 0s vt

Figure 4.1 is the Bode magnitude plot of this Wy and exp(—7s) — 1 for 7 = 0.1, the worst value.
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Figure 4.1: Bode plots of W5 (dash) and exp(—0.1s) — 1 (solid).

To get a feeling for how conservative this is, compare at a few frequencies w the actual uncer-
tainty set

P(j :
{ (]w):OSTSO.l}:{e”“’:OSTSO.I}

with the covering disk
{s:]s = 1] < [Wa(jw)l}-

Example 3 Suppose that the plant transfer function is
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where the gain £ is uncertain but is known to lie in the interval [0.1,10]. This plant too can be
embedded in a family consisting of multiplicative perturbations of a nominal plant

ko
P(s) = )
(s) —
The weight Wy must satisfy
P(jw) .
-1 < k
P(jw) < |Wa(jw)|, Vw,k,
that is,
k
- < . .
0.1H§1%}§(10 ko 1‘ — |W2(]w)|7 Vw

The left-hand side is minimized by ko = 5.05, for which the left-hand side equals 4.95/5.05. In this

way we get the nominal plant
5.05

and constant weight Wa(s) = 4.95/5.05.

The multiplicative perturbation model is not suitable for every application because the disk
covering the uncertainty set is sometimes too coarse an approximation. In this case a controller
designed for the multiplicative uncertainty model would probably be too conservative for the original
uncertainty model.

The discussion above illustrates an important point. In modeling a plant we may arrive at a
certain plant set. This set may be too awkward to cope with mathematically, so we may embed it
in a larger set that is easier to handle. Conceivably, the achievable performance for the larger set
may not be as good as the achievable performance for the smaller; that is, there may exist—even
though we cannot find it—a controller that is better for the smaller set than the controller we
design for the larger set. In this sense the latter controller is conservative for the smaller set.

In this book we stick with plant uncertainty that is disk-like. It will be conservative for some
problems, but the payoff is that we obtain some very nice theoretical results. The resulting theory
is remarkably practical as well.

Other Perturbations

Other uncertainty models are possible besides multiplicative perturbations, as illustrated by the
following example.

Example 4 As at the start of this section, consider the family of plant transfer functions

1

L 04<a<08.
s24+as+1

Thus
a=06+024A, —-1<ALI,
so the family can be expressed as

P(s)
1+ AWs(s)P(s)’

~1<A<I,
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where
1

P(s) = —————
() 52 +0.6s+1’
Note that P is the nominal plant transfer function for the value ¢ = 0.6, the midpoint of the interval.
The block diagram corresponding to this representation of the plant is shown in Figure 4.2. Thus

Ws(s) := 0.2s.

A Wy

() P

Figure 4.2: Example 4.

the original plant has been represented as a feedback uncertainty around a nominal plant.

The following list summarizes the common uncertainty models:

(1+ AWsy)P
P+ AW,
P/(1+ AW, P)
P/(1+ AWs)

Appropriate assumptions would be made on A and W5 in each case. Typically, we can relax the
assumption that A be stable; but then the theorems to follow would be harder to prove.

4.2 Robust Stability

The notion of robustness can be described as follows. Suppose that the plant transfer function P
belongs to a set P, as in the preceding section. Consider some characteristic of the feedback system,
for example, that it is internally stable. A controller C' is robust with respect to this characteristic
if this characteristic holds for every plant in P. The notion of robustness therefore requires a
controller, a set of plants, and some characteristic of the system. For us, the two most important
variations of this notion are robust stability, treated in this section, and robust performance, treated
in the next.

A controller C provides robust stability if it provides internal stability for every plant in P. We
might like to have a test for robust stability, a test involving C and P. Or if P has an associated
size, the maximum size such that C stabilizes all of P might be a useful notion of stability margin.

The Nyquist plot gives information about stability margin. Note that the distance from the
critical point -1 to the nearest point on the Nyquist plot of L equals 1/||S/|oo:

distance from -1 to Nyquist plot = inf|—1— L(jw)|
w
= inf |l + L(jw)]
w

- [wirigm]
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= ISl

Thus if ||S|lecc > 1, the Nyquist plot comes close to the critical point, and the feedback system is
nearly unstable. However, as a measure of stability margin this distance is not entirely adequate
because it contains no frequency information. More precisely, if the nominal plant P is perturbed
to P, having the same number of unstable poles as has P and satisfying the inequality

|P(jw)Cjw) — P(jw)C(jw)| < ISl VYw,

then internal stability is preserved (the number of encirclements of the critical point by the Nyquist
plot does not change). But this is usually very conservative; for instance, larger perturbations could
be allowed at frequencies where P(jw)C(jw) is far from the critical point.

Better stability margins are obtained by taking explicit frequency-dependent perturbation mod-
els: for example, the multiplicative perturbation model, P = (1 + AW5)P. Fix a positive number
B and consider the family of plants

{P: A is stable and ||A||s < B}.

Now a controller C' that achieves internal stability for the nominal plant P will stabilize this entire
family if 3 is small enough. Denote by sy, the least upper bound on 3 such that C' achieves internal
stability for the entire family. Then fg,p, is a stability margin (with respect to this uncertainty
model). Analogous stability margins could be defined for the other uncertainty models.

We turn now to two classical measures of stability margin, gain and phase margin. Assume
that the feedback system is internally stable with plant P and controller C'. Now perturb the plant
to kP, with k a positive real number. The upper gain margin, denoted kyax, is the first value of
k greater than 1 when the feedback system is not internally stable; that is, kmax is the maximum
number such that internal stability holds for 1 < k < kyax. If there is no such number, then set
kmax := 0o. Similarly, the lower gain margin, kmin, is the least nonnegative number such that
internal stability holds for knijn < k& < 1. These two numbers can be read off the Nyquist plot of
L; for example, —1/kpax is the point where the Nyquist plot intersects the segment (—1,0) of the
real axis, the closest point to —1 if there are several points of intersection.

Now perturb the plant to e 7P, with ¢ a positive real number. The phase margin, Gmayx, is the
maximum number (usually expressed in degrees) such that internal stability holds for 0 < ¢ < ¢max.-
You can see that ¢max is the angle through which the Nyquist plot must be rotated until it passes
through the critical point, —1; or, in radians, ¢max equals the arc length along the unit circle from
the Nyquist plot to the critical point.

Thus gain and phase margins measure the distance from the critical point to the Nyquist plot
in certain specific directions. Gain and phase margins have traditionally been important measures
of stability robustness: if either is small, the system is close to instability. Notice, however, that
the gain and phase margins can be relatively large and yet the Nyquist plot of L can pass close
to the critical point; that is, simultaneous small changes in gain and phase could cause internal
instability. We return to these margins in Chapter 11.

Now we look at a typical robust stability test, one for the multiplicative perturbation model.
Assume that the nominal feedback system (i.e., with A = 0) is internally stable for controller C.
Bring in again the complementary sensitivity function

L pPC

T:l— = == .
5 1+L 1+ PC

Theorem 1 (Multiplicative uncertainty model) C provides robust stability iff ||WoT||s < 1.
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Proof (<) Assume that |[W3T||oc < 1. Construct the Nyquist plot of L, indenting D to the
left around poles on the imaginary axis. Since the nominal feedback system is internally stable,
we know this from the Nyquist criterion: The Nyquist plot of L does not pass through -1 and its
number of counterclockwise encirclements equals the number of poles of P in Res > 0 plus the
number of poles of C' in Res > 0.

Fix an allowable A. Construct the Nyquist plot of PC' = (1 + AW3)L. No additional inden-
tations are required since AWs introduces no additional imaginary axis poles. We have to show
that the Nyquist plot of (1 + AW5)L does not pass through -1 and its number of counterclockwise
encirclements equals the number of poles of (1 4+ AW3)P in Re s > 0 plus the number of poles of C'
in Re s > 0; equivalently, the Nyquist plot of (1 + AW5)L does not pass through -1 and encircles
it exactly as many times as does the Nyquist plot of L. We must show, in other words, that the
perturbation does not change the number of encirclements.

The key equation is

1+ (1+AWy)L = (1+ L)(1 + AWLT). (4.1)

Since

HAWZTHOO < ||W2T||oo < 17

the point 1+ AW>T always lies in some closed disk with center 1, radius < 1, for all points s on D.
Thus from (4.1), as s goes once around D, the net change in the angle of 1 + (1 + AW5)L equals
the net change in the angle of 1 4+ L. This gives the desired result.

(=) Suppose that ||W2T'|| > 1. We will construct an allowable A that destabilizes the feedback

system. Since T is strictly proper, at some frequency w,
(W2 (jw)T (jw)| = 1. (4.2)

Suppose that w = 0. Then W5(0)T'(0) is a real number, either +1 or —1. If A = —W5(0)7'(0), then
A is allowable and
1+ AW,(0)T(0) = 0.

From (4.1) the Nyquist plot of (1 + AW5)L passes through the critical point, so the perturbed
feedback system is not internally stable.
If w > 0, constructing an admissible A takes a little more work; the details are omitted. B

The theorem can be used effectively to find the stability margin s, defined previously. The
simple scaling technique

{P=(1+AW)P: [Allw < B} = {P=(1+"AW2)P: || Al <1}

= {P=(1+A18W)P : [[Ay]leo <1}

together with the theorem shows that
Psup = sup{B : [[BWoT ||oo <1} = 1/[[WoT oo
The condition |[WoT || < 1 also has a nice graphical interpretation. Note that

Wa(jw) L(jw)
1+ L(jw)
& [Wa(jw)L(jw)| < |1+ L(jw)|, V.

[WoTl'|loo <1 & <1, VYw
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|WaL|

Figure 4.3: Robust stability graphically.

Figure 4.4: Perturbed feedback system.

The last inequality says that at every frequency, the critical point, -1, lies outside the disk of center
L(jw), radius |Wa(jw)L(jw)| (Figure 4.3).

There is a simple way to see the relevance of the condition |[W5T'||» < 1. First, draw the block
diagram of the perturbed feedback system, but ignoring inputs (Figure 4.4). The transfer function
from the output of A around to the input of A equals —W>T', so the block diagram collapses to
the configuration shown in Figure 4.5. The maximum loop gain in Figure 4.5 equals || — AWT||,

—-WoT

Figure 4.5: Collapsed block diagram.

which is < 1 for all allowable As iff the small-gain condition ||[W5T||» < 1 holds.
The foregoing discussion is related to the small-gain theorem, a special case of which is this: If
L is stable and ||L|| < 1, then (14 L)~ ! is stable too. An easy proof uses the Nyquist criterion.
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Summary of Robust Stability Tests

Table 4.1 summarizes the robust stability tests for the other uncertainty models.

Perturbation Condition
(1+ AWy)P [WaT |l < 1
P+ AW, [W2C S|l < 1

P/(1+ AW3P) | |[W2PS||s < 1
P/(1+AW;) | [[WaS]le <1

Table 4.1

Note that we get the same four transfer functions—1', C'S, PS, S—as we did in Section 3.4. This
should not be too surprising since (up to sign) these are the only closed-loop transfer functions for
a unity feedback SISO system.

4.3 Robust Performance

Now we look into performance of the perturbed plant. Suppose that the plant transfer function
belongs to a set P. The general notion of robust performance is that internal stability and per-
formance, of a specified type, should hold for all plants in P. Again we focus on multiplicative
perturbations.

Recall that when the nominal feedback system is internally stable, the nominal performance
condition is |W1S|| < 1 and the robust stability condition is |[WoT ||« < 1. If P is perturbed to
(1 4+ AWs)P, S is perturbed to

1 S
L+ (1L+AWR)L 14+ AWLRT"

Clearly, the robust performance condition should therefore be

W.S
[W2T||o < 1 and H ! H <1, VA.

1+AW2T 00

Here A must be allowable. The next theorem gives a test for robust performance in terms of the
function

s = [Wi(s)S(s)| + [Wa(s)T (s)],
which is denoted |W; S| + |WoT|.
Theorem 2 A necessary and sufficient condition for robust performance is
[W1S] + [WoT||loo < 1. (4.3)

Proof (<) Assume (4.3), or equivalently,

|WT||oe and H W15 H

~TWoT| (4.4)
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Fix A. In what follows, functions are evaluated at an arbitrary point jw, but this is suppressed to
simplify notation. We have

1= |1 + AWST — AW2T| < |1 + AW2T| + |W2T|

and therefore
1 — |WoT| < |1+ AWLT).

This implies that

WS WS
1T—WaTl||, = |1+ AWLT |,
This and (4.4) yield
LIS <1
1+ AWLT |,
(=) Assume that
WS
T 1 _ 1 A. 4.
Tl < vand |l <1 (4.5
Pick a frequency w where
(W1 5|
1 — |[WoT|

is maximum. Now pick A so that
1 — |WoT| = |1+ AWLT|.

The idea here is that A(jw) should rotate Wy (jw)T (jw) so that A(jw)Wa(jw)T(jw) is negative
real. The details of how to construct such an allowable A are omitted. Now we have

W,S s

| =il -
[W1S|

T+ AWLT]
WS

=2l

So from this and (4.5) there follows (4.4). W

Test (4.3) also has a nice graphical interpretation. For each frequency w, construct two closed
disks: one with center —1, radius |Wj(jw)|; the other with center L(jw), radius |Wa(jw)L(jw)|.
Then (4.3) holds iff for each w these two disks are disjoint (Figure 4.6).

The robust performance condition says that the robust performance level 1 is achieved. More
generally, let’s say that robust performance level « is achieved if

WS
WoT land ||———— VA.
Tl < 1and || <a
Noting that at every frequency
. WS |[W1 S|
max =
|al<1 |1+ AWST 1- |W2T|
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||

o

|WaL|

Figure 4.6: Robust performance graphically.

we get that the minimum « equals
=l

4.
1 — [WoT| (46)

Alternatively, we may wish to know how large the uncertainty can be while the robust perfor-
mance condition holds. To do this, we scale the uncertainty level, that is, we allow A to satisfy
|Allcc < 8. Application of Theorem 1 shows that internal stability is robust iff ||fW2T|| < 1.
Let’s say that the uncertainty level g is permissible if

WS
WoT||eo <1land |—————| <1, VA.
Tl <1 and ]
Again, noting that
ma WS |[W1S|
X =
A< |14 BAWLT | 1 — BIWLT|’
we get that the maximum S equals
sl
1 —|WiS| ||

Now we turn briefly to some related problems.

Robust Stability for Multiple Perturbations

Suppose that a nominal plant P is perturbed to

ﬁ _ ]. + AZWQ
- 1+ AW,

with Wy, Wy both stable and Ay, As both admissible. The robust stability condition is
[[W1S] + [WaT ||l < 1,

which is just the robust performance condition in Theorem 2. A sketch of the proof goes like this:
From the fourth entry in Table 4.1, for fixed Ay the robust stability condition for varying A is
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Then from Theorem 2 this holds for all admissible Aq iff
[IWLS] + [WaT|loo < 1.
This illustrates a more general point: Robust performance with one perturbation is equivalent
to robust stability with two perturbations, provided that performance is in terms of the co-norm
and the second perturbation is chosen appropriately.

Robust Command Response

Consider the block diagram shown in Figure 4.7. Shown are a plant P and two controller compo-

E— Cl —>Q—’ P Y

Co

Figure 4.7: Two-degree-of-freedom controller.

nents, C; and C5. This is known as a two-degree-of-freedom controller because the plant input is
allowed to be a function of the two signals r and y independently, not just r — y. We will not go
into details about such controllers or about the appropriate definition of internal stability.

Define

1
S=— T:=1-8.
1+ PCy’
Then the transfer function from r to y, denoted T),, is
Ty = PSC.

Let M be a transfer function representing a model that we want the foregoing system to emulate.
Denote by e the difference between y and the output of M. The error transfer function, that from
r to e, is
Ter =Ty — M = PSCy — M.

The ideal choice for C', the one making T, = 0, would therefore be
M
= 53’
This choice may violate the internal stability constraint, but let’s suppose that in order to continue
that it does not (this places some limitations on M).

Consider now a multiplicative perturbation of the plant: P becomes P = (1 + AW,)P, A
admissible. Then Tg, becomes

Ter - Picjl -
1+ PCYy

P M
1+ PCy PS
AWM S

= 11 AT (after some algebra).

Cy
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Defining W; := Ws M, we find that the maximum oo-norm of the error transfer function, over all
admissible A, is

WS
= [WaT1

T =
g el = | =

The right-hand side we have already seen in (4.6).

Note that we convert the problem of making the closed-loop response from r to y match some
desired response by subtracting off that desired response and forming an error signal e which we seek
to keep small. In some treatments of the command response problem, the performance specification
is taken to be: make |T},| close to a desired model. The problem with this specification is that two
transfer functions can be close in magnitude but differ substantially in phase. Surprisingly, this
can occur even when both transfer functions are minimum phase. The interested reader may want
to investigate this further using the gain-phase relation developed in Chapter 7.

4.4 Robust Performance More Generally
Theorem 2 gives the robust performance test under the following conditions:

Perturbation model: (1+ AWy)P
Nominal performance condition:  ||W1S|o0 < 1

Table 4.2 gives tests for the four uncertainty models and two nominal performance conditions.

Nominal Performance Condition
Perturbation IW1S|leo < 1 IW1T |00 < 1
(L+AW)P | [[[WiS] + [WoT|lso < 1 messy
P+ WhA ||[W1 S|+ [WaCS||loo < 1 messy
P/(1 4 AW,P) messy ||[WAT| + [W2PS|||leo < 1
P/(1+ AWs) messy [|WAT| 4+ [WaS||loo < 1
Table 4.2

The entries marked messy are just that. The difficulty is the way in which A enters. For
example, consider the case where

Perturbation model: (1+ AWsy)P
Nominal performance condition: ||[W1T||s < 1

The perturbed T is
(1+AWR)PC (14 AW,)T

1+ (1+AW2)PC 14+ AWLT’

so the perturbed performance condition is equivalent to

|W1(1 + AWQ)T| < |1 + AW2T|, Vw.

Now for each fixed w
[Wi(1+ AWo)T| < [WiT|(1 + [Wal)
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and
1 — |WoT| < |1+ AWLT).
So a sufficient condition for robust performance is
WAT(1 + W) H .
L—WT| |

4.5 Conclusion

The nominal feedback system is assumed to be internally stable. Then the nominal performance
condition is ||W1S|| < 1 and the robust stability condition (with respect to multiplicative pertur-
bations) is [|[WoT ||~ < 1.

The condition for simultaneously achieving nominal performance and robust stability is

|| max (|[W1S|, [WaT|)||s < 1. (4.7

The robust performance condition is

IWoT s < 1 and H%Hw <1, vA
and the test for this is
[IW1S] + [WaT|loo < 1. (4.8)
Since
max (|[W1 S|, |WaT|) < Wi S|+ |WoT| < 2max (|W1 S|, |[WaT)) (4.9)

conditions (4.7) and (4.8) are not too far apart. For instance, if nominal performance and robust
stability are obtained with a safety factor of 2, that is,

W1Sllee <1/2,  [WaT oo <1/2,

then robust performance is automatically obtained.
A compromise condition, which we shall treat in Chapters 8 and 12, is

(W1 S)” + [WaT ") /?|l0e < 1. (4.10)
Simple plane geometry shows that
max (W1 S, |WaT)|) < (|W1S|2 + |[WoT|?)Y? < W\ S| + |[WoT| (4.11)
and )
—(W1S| + [WaT|) < (Wi S|? + [WoT|*)'/? < v2max (W1 S|, [W,T). (4.12)

V2
Thus (4.10) is a reasonable approximation to both (4.7) and (4.8).
To elaborate on this point, let’s consider

=)= (win )

as a vector in R2. Then (4.7), (4.8), and (4.10) correspond, respectively, to the three different
norms

max (|z1], o)), 1| + [wal,  (Joa]” + |zal*)/2.
The third is the Euclidean norm and is the most tractable. The point being made here is that
choice of these spatial norms is not crucial: The tradeoffs between |W;S| and |W>T| inherent in
control problems mean that although the norms may differ by as much as a factor of 2, the actual
solutions one gets by using the different norms are not very different.
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Exercises

1.

Consider a unity-feedback system. True or false: If a controller internally stabilizes two
plants, they have the same number of poles in Res > 0.

. Unity-feedback problem. Let P,(s) be a plant depending on a real parameter «. Suppose

that the poles of P, move continuously as « varies over the interval [0, 1]. True or false: If a
controller internally stabilizes P, for every « in [0, 1], then P, has the same number of poles
in Re s > 0 for every « in [0, 1].

For the unity-feedback system with P(s) = k/s, does there exist a proper controller C(s)
such that the feedback system is internally stable for both k = +1 and &k = —17

. Suppose that

P(s) = L C(s)=1

s(s+2¢wy)’

with wy,,( > 0. Note that the characteristic polynomial is the standard second-order one.
Find the phase margin as a function of {. Sketch the graph of this function.

. Consider the unity-feedback system with

P(s)= —— -

FEy I

For what range of « (a real number) is the feedback system internally stable? Find the upper
and lower gain margins as functions of a.

. This problem studies robust stability for real parameter variations. Consider the unity-

feedback system with C'(s) = 10 and plant

s—a
where q is real.

(a) Find the range of a for the feedback system to be internally stable.

(b) For a = 0 the plant is P(s) = 1/s. Regarding a as a perturbation, we can write the

plant as
P

1+ AWLP
with W(s) = —a. Then P equals the true plant when A(s) = 1. Apply robust stability

theory to see when the feedback system with plant P is internally stable for all ||A]|o < 1.
You will get a smaller range for a than in part (a).

(c) Repeat with the nominal plant P(s) = 1/(s + 100).

P=

. This problem concerns robust stability of the unity-feedback system. Suppose that P and C

are nominal transfer functions for which the feedback system is internally stable. Instead of
allowing perturbations in just P, this problem allows perturbations in C' too. Suppose that

P may be perturbed to
(1+AW)P



o4

10.

CHAPTER 4. UNCERTAINTY AND ROBUSTNESS

and C' may be perturbed to
(14 AV)C.

The transfer functions W and V are fixed, while Ay and As are variable transfer functions
having co-norms no greater than 1. Making appropriate additional assumptions, find a suffi-
cient condition, depending only on the four functions P, C;, W, V', for robust stability. Prove
sufficiency. (A weak sufficient condition is the goal; for example, the condition W =V =0
would be too strong.)

Assume that the nominal plant transfer function is a double integrator,

The performance requirement is that the plant output should track reference inputs over
the frequency range [0,1]. The performance weight W; could therefore be chosen so that its
magnitude is constant over this frequency range and then rolls off at higher frequencies. A
common choice for Wy is a Butterworth filter, which is maximally flat over its bandwidth.
Choose a third-order Butterworth filter for W with cutoff frequency 1 rad/s. Take the weight

Wy to be
0.21s

Wals) = 1

(a) Design a proper C to achieve internal stability for the nominal plant.

(b) Check the robust stability condition |W2T||s < 1. If this does not hold, redesign C
until it does. It is not necessary to get a C that yields good performance.

(c) Compute the robust performance level « for your controller from (4.6).

Consider the class of perturbed plants of the form

_r
1+ AWLP’

where W5 is a fixed stable weighting function with Wy P strictly proper and A is a variable
stable transfer function with ||Alj, < 1. Assume that C is a controller achieving internal
stability for P. Prove that C provides internal stability for the perturbed plant if ||W2 PS||» <
1.

Suppose that the plant transfer function is
P(s) = [1 + A(s)Wa(s)] P(s),

where

2 1

Wals) = g

and the stable perturbation A satisfies ||Al < 2. Suppose that the controller is the pure
gain C(s) = k. We want the feedback system to be internally stable for all such perturbations.
Determine over what range of k this is true.
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Notes and References

The basis for this chapter is Doyle and Stein (1981). This paper emphasized the importance of
explicit uncertainty models such as multiplicative and additive. Theorem 1 is stated in that paper,
but a complete proof is due to Chen and Desoer (1982). The sufficiency part of this theorem is a
version of the small-gain theorem, due to Sandberg and Zames [see, e.g., Desoer and Vidyasagar
(1975)].
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