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1 General Comments

The exam will cover mostly material since the midterm, but may include or rely on concepts from
the first half of the term. As usual, the best resources for review are

• Past Homeworks...

• Lecture Notes...

• Text Reading and Examples...

2 DFT Chapter 2: Norms for Signals and Systems

In this chapter, the temporal norms of time-varying signals are presented as a way to measure their
size. Also, the notion of a norm for a system’s transfer function is introduced. Consider two signals
e1(t) and e2(t):

For e1(t) the infinity-norm (peak) is 1, ‖e1(t)‖∞ = 1, whereas since the signal does not “die
out” the 2-norm is infinite, ‖e1(t)‖2 =∞. For e2(t) the opposite is true.
Consider a system G with input d and output e,

e = Gd

For performance we may want the output signal e to be small for any allowed input signals d, i.e.
we need to specify the set that d belongs to and what we mean by “small”. Possible input signals
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sets might be specific (may be white noise process with zero mean, a sinusoid of fixed frequency etc)
or they might be specified by norm bounds (bounded in energy (2-norm) in power (power “norm”),
in magnitude (∞-norm)). To measure the output signal one may consider the 1-norm, the 2-norm
(energy), the ∞-norm or the power.
The question to ask is what is the appropriate system gain to test for performance. You should

be familiar with induced norms and translating signal specifications into equivalent specifications
on system norms.

Example 2.1. Let u(t) be a continuous signal whose derivative u̇(t) is also continuous. Which of
the following qualify as a norm for u?

• supt |u̇(t)|

• |u(0)|+ supt |u̇(t)|

3 DFT Chapter 3: Basic Concepts

Standard Block Diagrams For a plant P , controller C, disturbance d, noise n, ...

Theorem 3.1 (Nyquist Stability Criterion). Let N be the number of poles of G(s) in the RHP.

Then 1
1+αG

is stable iff the number of anticlockwise encirclements of the −1/α point equals N .

Internal Stability Consider the plant

P (s) = P1(s)
2− s

2 + s

and a proposed controller

C(s) = C1(s)
2 + s

2− s
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where C1 is a suitable compensator for P1. Now PC = P1C1, so if
1

1+P1C1
is stable, 1

1+PC
will be

too. However we must ensure that the response of the control input to disturbances is also stable,
and in this case we find that

C

1 + CP
=

C1
1 + C1P1

2 + s

2− s

which is unstable. In general, a feedback system comprising a plant P and a controller C is
internally stable if each of the following closed-loop transfer functions is stable:

In fact, we only need to check if two of them are. Which two?

This condition is equivalent to any one of them being stable (i.e. 1+PC having no zeros in the
RHP) and there being no closed RHP zero/pole cancellations between P and C.

4 DFT Chapter 4: Uncertainty and Robustness

Recall that making the sensitivity function small is one of the most fundamental objectives of
feedback design. Consider T (s) as a function of P . Then the closed loop transfer function (com-
plementary sensitivity)

T =
PC

1 + PC

has some perturbation due to infinitesimal changes in the plant which is

lim
∆P→0

∆T/T

∆P/P
=

dT

dP

P

T
=

This means that the relative error in the closed-loop transfer function is reduced compared
to the relative error in the open loop transfer function if ‖S(s)‖∞ < 1, or when we introduce a
weight, ‖W1S‖∞ < 1. This requires that at every frequency the point L(jω) on the Nyquist plot
lies outside the disk of center -1, radius W1(jω).
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Example 4.1. We all know the notion of phase and gain margin. True or false: ‖S(s)‖∞ will
become large if and only if our system has poor gain margin or poor phase margin.

We will use the Small Gain Theorem to find a condition for robust stability:

Theorem 4.1. Suppose G(s) is a stable fixed transfer function. Let γ be a positive constant. Then

the feedback system

is stable for all stable ∆(s) satisfying |∆(jω)| ≤ γ iff ‖G(jω)‖∞ < 1/γ.

Consider now a multiplicative uncertainty model, assuming the feedback system is stable. Write

P̃ = (1 +W2∆)P

where W1, P are fixed, ∆ is not, but stable and norm bounded: ‖∆‖∞ ≤ 1.

Example 4.2. Multiplicative uncertainty.

5 DFT Chapter 6: Design Constraints

Recall the following constraints:

• Algebraic Constraints:

1. S+T = 1: At any frequency ω, |S(jω)| and |T (jω)| cannot be both less than 0.5.

2. The weighting functions W1(jω) and W2(jω) satisfy
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Recall that W1 is monotonically decreasing for good tracking of low-frequency signals,
and W2 is monotonically increasing, as uncertainty increases at high frequencies.

3. If p is a pole and z is a zero of L in the RHP, then

• Analytic Constraints:

1. If L has a zero z in RHP then

‖W1S‖∞ ≥ |W1 (z)|

2. If L has a pole p in RHP then

‖W2T‖∞ ≥ |W2 (p)|

3. If L has a pole p in RHP and a zero z in RHP then

4. The Waterbed effect: Let M1 := maxω1≤ω≤ω2
|S (jω)| and M2 the maximum magnitude

over all frequencies, i.e. ‖S‖∞. If L has a zero z in the RHP then there exist c1 and c2
depending on ω1, ω2 and z such that

5. The area formula: Let pi denote the set of poles of L in RHP.

∫ ∞

0

log |S (jω)| dω = π log e
(

∑

Re {pi}
)
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Exercise 5.1. Let ω be a frequency such that jω is not a pole of P . Suppose that ε := |S(jω)| < 1
at this frequency. Derive a lower bound for |C(jω)| that blows up as ε→ 0.

6 DFT Chapter 7: Loopshaping

The idea is to construct a stable loop transfer function L such that

‖|W1S|+ |W2T |‖∞ < 1

is satisfied and then get C = L/P. To do this, require

and shape L accordingly, until you get an L that satisfies robust stability (make sure it’s feedback
is stable). In general, if L rolls off with more than 40 dB/dec at the crossover frequency the closed
loop system is likely to be unstable.

7 Some Brief Exercises

Translate the following specifications for the closed-loop system.

1. The effect of the plant input disturbances at the plant output is reduced to ε times their open
loop magnitude for 0 ≤ ω ≤ 1 rad/s.

2. Sensor noise should be reduced at the plant output by at least 40dB for ω ≥ 10 rad/s

Suppose that |S(jω)| ≤ 1.46 for all ω. Show that this is sufficient to ensure a phase margin of
at least 40◦.
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8 Discrete Time Systems

z-Transform and Difference Equations

1. Definition Z{f(k)} =
∑∞

k=0 f(k)z
−k

2. Get z transfer function from difference equations

Z{f(k − 1)} = z−1F (z), if Z{f(k)} = F (z)

For difference equations

y(k) = −a1y(k − 1)− a2y(k − 2) + b0u(k) + b1u(k − 1),

the z transfer function is

H(z) =
Y (z)

U(z)
=

b0 + b1z
−1

1 + a1z−1 + a2z−2
.

For state space system
{

x(k + 1) = Adx(k) +Bdu(k)
y(k) = Cdx(k) +Ddu(k)

,

the z transfer function is H(z) = Cd(z · I −Ad)
−1Bd +Dd.

3. Final value theorem of z transfer function:

lim
k→∞

h(k) = lim
z→1
(1− z−1)H(z).

4. The stable area of discrete systems is |z| < 1 in the z-plane. You can use the same skills as
the continuous systems to design compensator, relocate poles, set up observers, etc.

Continuous to Discrete Transformation

1. s-transfer function to z-transfer function by substitute every s as 2
T
1−z−1

1+z−1 . This can be done
by MATLAB command as c2d(tf, T, ’tustin’) which is based on bilinear approximation
(Tustin’s method).

2. State space case. There are three methods mentioned in class. Assume a continuous system
is

ẋ = Acx+Bcu

y = Ccx+Dcu

(a) Forward Difference

x(k + 1) = (I + TAc)x(k) + TBcu(k)

y(k) = Ccx(k)

Note: c2d(sys, T, ’ZOH’) is not totally equal to forward difference method.
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(b) Backward Difference

x(k + 1) = (I − TAc)
−1x(k) + (I − TAc)

−1TBcu(k)

y(k) = Ccx(k)

(c) Bilinear Approximation (Tustin’s Method)

x(k + 1) = (I − 0.5TAc)
−1(I + 0.5TAc)x(k) + 0.5T (I − 0.5TAc)

−1(I + 0.5TAc)Bcu(k)

y(k) = Ccx(k)

9 Additional Notes
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