Design Patterns for Control Systems

“Classical” control (1950s...)
- Reference input shaping
- Feedback on output error
- Compensator dynamics shape closed loop response
- Uncertainty in process dynamics $P(s) +$ external disturbances (d) & noise (n)

- Goal: output $y(t)$ should track reference trajectory $r(t)$
- Design typically done in “frequency domain” (second half of CDS 101/110)

“Modern” (state space) control (1970s...)
- Assume dynamics are given by linear system, with known A, B, C, D matrices
- Measure the state of the system and use this to modify the input
- $u = -K \dot{x} + k_r r$

- Goal unchanged: output $y(t)$ should track reference trajectory $r(t)$ [often constant]
Input/Output Control Design Specifications

Keep track all input/output transfer functions
- Keep error small for all reference signals \(r \)
- Attenuate effect of sensor noise \(n \) and disturbances \(d \)
- Avoid large input commands \(u \)

Design represents a tradeoff between the quantities
- Keep \(L = PC \) large for good performance \((H_{er} << 1) \)
- Keep \(L = PC \) small for good noise rejection \((H_{ge} < 1) \)

\[F(s) = 1: \text{Four unique transfer functions define performance ("Gang of Four")}\]
- Stability is always determined by \(1/(1+PC) \) assuming stable process & controller
- Numerator determined by forward path between input and output

More generally: 6 primary transfer functions; simultaneous design of each
- Controller \(C(s) \) enters in multiple places \(\Rightarrow \) hard to understand tradeoffs

\[
\begin{bmatrix}
\eta \\
y \\
u
\end{bmatrix} =
\begin{bmatrix}
\frac{P}{1+PC} & \frac{PC}{1+PC} & \frac{PCF}{1+PC} \\
\frac{P}{1+PC} & \frac{1}{1+PC} & \frac{PCF}{1+PC} \\
-\frac{PC}{1+PC} & \frac{-C}{1+PC} & \frac{CF}{1+PC}
\end{bmatrix}
\begin{bmatrix}
d \\
n \\
r
\end{bmatrix}
\]

Frequency Domain Specifications

Specifications on the open loop transfer function \((L) \)
- Gain crossover frequency, \(\omega_{gc} \), is the lowest frequency at which loop gain = 1
- Gain margin, \(gm \), is the amount the loop gain can be increased before instability
- Phase margin, \(\phi_m \), is amount of phase lag required to generate instability

Specifications on closed loop frequency response (eg \(H_{yr}, H_{yd}, \text{etc} \))
- Resonant peak, \(Mr \), is the largest value of the frequency response
- Peak frequency, \(\omega_p \), is the frequency where the maximum occurs
- Bandwidth, \(\omega_b \), is the frequency where the gain has decreased to \(1/\sqrt{2} \)

Basic idea: convert specs on closed loop to specs on open loop
- Bandwidth \(\approx \) value for which \(|L| = 1 \)
- Resonant peak set by phase margin
- Keep \(L \) large to set \(H_{yr} \approx 1 \)
Time Domain Specs \rightarrow Frequency Domain Specs

Time domain specifications

Map to frequency domain for second order system

\[
L(s) = \frac{k}{s^2 + bs} \quad \text{and} \quad H_{gy} = \frac{k}{s^2 + bs + k}
\]

- Use properties of second order systems (Ch 7)
- HW #8, problem 1 (CDS 110 only)

"Loop Shaping": Design Loop Transfer Function

Translate specs to "loop shape"

\[
L(s) = P(s)C(s)
\]

- Design C(s) to obey constraints

Typical loop constraints

- High gain at low frequency
 - Good tracking, disturbance rejection at low freqs
- Low gain at high frequency
 - Avoid amplifying noise
- Sufficiently high bandwidth
 - Good rise/settling time
- Shallow slope at crossover
 - Sufficient phase margin for robustness, low overshoot

Key constraint: slope of gain curve determines phase curve

- Can’t independently adjust
- Eg: slope at crossover sets PM
Loop Shaping: Basic Approach

- **Disturbance rejection**

 \[H_{ed} = \frac{-P}{1 + L} \]

 - Would like \(H_{ed} \) to be small make \(\Rightarrow \) large \(L(s) \)
 - Typically require this in low frequency range

- **High frequency measurement noise**

 \[H_{un} = \frac{-L}{P(1 + L)} \]

 - Want to make sure that \(H_{un} \) is small (avoid amplifying noise) \(\Rightarrow \) small \(L(s) \)
 - Typically generates constraints in high frequency range

- **Robustness: gain and phase margin**
 - Focus on gain crossover region: make sure the slope is “gentle” at gain crossover
 - Fundamental tradeoff: transition from high gain to low gain through crossover

Design Method #1: Process Inversion

- **Simple trick: invert out process**

 - Write all performance specs in terms of the desired loop transfer function
 - Choose \(L(s) \) that satisfies specifications
 - Choose controller by inverting \(P(s) \)

 \[C(s) = \frac{L(s)}{P(s)} \]

- **Pros**
 - Very easy design process
 - \(L(s) = k/s \) often works very well
 - Can be used as a first cut, with additional shaping to tune design

- **Cons**
 - High order controllers (at least same order as the process you are controlling)
 - Requires “perfect” model of your process (since you are inverting it)
 - Can generate non-proper controllers (order(num) > order(den))
 - Difficult to implement, plus amplifies noise at high frequency (\(C(\infty) = \infty \))
 - Fix by adding high frequency poles to roll off control response at high frequency
 - Does not work if you have right half plane poles or zeros (get internal instability)
Design Method #2: Lead compensation

Use to increase phase in frequency band
- Effect: lifts phase by increasing gain at high frequency
- Very useful controller; increases PM
- Bode: add phase between zero and pole
- Nyquist: increase phase margin

Example: Lead Compensation for Second Order System

System description
\[P(s) = \frac{p_1 p_2}{(s + p_1)(s + p_2)} \]
- Poles: \(p_1 = 1 \), \(p_2 = 5 \)

Control specs
- Track constant reference with error < 1%
- Good tracking up to 100 rad/s (less than 10% error)
- Overshoot less than 10%
 - Gives PM of \(\sim 60 \) deg

Try a lead compensator
\[C(s) = K \frac{s + a}{s + b} \]
- Want gain crossover at approximately 100 rad/sec => center phase gain there
- Set zero frequency gain of controller to give small error => \(|L(0)| > 100 \)
- \(a = 20 \), \(b = 500 \), \(K = 10,000 \) (gives \(|C(0)| = |L(0)| = 400 \))
Safety Check: Nyquist + Gang of 4

Nyquist verifies closed loop stability
- Infinite GM; good phase margin

Gang of 4 shows high noise sens’y
- Factor of 10,000 gain at high freq
- Step responses show similar sensitivity

Solution? (HW #8…)

Summary: Loop Shaping

Loop Shaping for Stability & Performance
- Steady state error, bandwidth, tracking response
- Specs can be on any input/output response pair

Main ideas
- Performance specs give bounds on loop transfer function
- Use controller to shape response
- Gain/phase relationships constrain design approach
- Standard compensators: proportional, lead, PI

Things to remember (for homework and exams)
- Always plot Nyquist to verify stability/robustness
- Check gang of 4 to make sure that noise and disturbance responses also look OK