
CALIFORNIA INSTITUTE OF TECHNOLOGY
Control and Dynamical Systems

CDS 101

R. M. Murray
Fall 2008

Problem Set #6 Issued: 10 Nov 08
Due: 17 Nov 08

Note: In the upper left hand corner of the second page of your homework set, please
put the number of hours that you spent on this homework set (including reading).

1. Plot the (open loop) Nyquist and Bode plots for the following systems and compute the
gain and phase margin of each. You should annotate your plots to show the gain and phase
margin computations. For the Nyquist plot, mark the branches corresponding to the following
sections of the Nyquist “D” contour: negative imaginary axis, positive imaginary axis, semi-
circle at infinity (the curved part of the “D”).

(a) Disk drive read head positioning system, using a lead compensator (described in Chap-
ter 11):

P (s) =
1

s3 + 10s2 + 3s + 10
, C(s) = 1000

s + 1

s + 10
.

(b) Second-order system with PD compensator:

P (s) =
100

(100s + 1)(s + 1)
, C(s) = s + 10.

Note: you may find it easier to sketch the Nyquist plot from the Bode plot (taking some
liberties with the scale) rather than relying on MATLAB.

2. In this problem we will design a PI controller for a cruise control system, building on the
example shown in class. Use the following transfer function to represent the vehicle and
engine dynamics:

P (s) =
Tba/m

(s + a)(s + c/m)

where b = 25 is the transmission gain, T = 200 is the conversion factor between the throttle
input and steady state torque, a = 0.2 is the engine lag coefficient, m = 1000 kg is the mass
of the car, and c = 50 N s/m is the viscous damping coefficient.

(a) Consider a proportional controller for the car, u = kp(r − y). Assuming a unity gain
feedback controller, this gives

C(s) = kp.

Set kp = 0.1 and compute the steady state error, gain and phase margins, rise time,
overshoot and poles/zeros for the system. Remember that the gain and phase margins
are computed based on the loop transfer function L(s) = P (s)C(s); the remaining
quantities should be computed for the closed loop system.

(b) Consider a proportional + integral controller for the car,

C(s) = kp +
ki

s
.

Fill in the following table (make sure to show your work):



kp ki Stable? gm ϕm Tr Mp

0.5 0.1

0.05 1

0.05 0.001

0.005 0.001

For each entry in the table, plot the pole zero diagram (pzmap) for the closed loop system
and the step response. (Note that the steady state error is zero in each stable case, due
to the integral term in the control law.)

(Suggestion: look for relationships between the various quantities you are computing
and plotting. This problem should give you some insight into the relationship between
some of the quantities.)
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1. Consider a closed loop system with the loop transfer function

L(s) =
k

(s + a)(s2 + 2ζω0s + ω2

0
)
.

(a) Assuming that a ≪ ω0 and ζ = 1, sketch the Bode and Nyquist plots for the system,
labeling they key features (in terms of k, a and ω0).

(b) For each of the following parameter sets, use the Nyquist criterion to determine if the
closed loop system is stable and, if so, what the gain, phase and stability margins are:

i. k = 200, a = 1, ζ = 1, ωn = 10

ii. k = 100, a = 1, ζ = 0.1, ωn = 10

iii. k = 100, a = 0, ζ = 1, ωn = 10

iv. k = 80, a = −1, ζ = 1, ωn = 10

Be sure to show the Nyquist plot for each case and show the gain and phase margins on
the Nyquist plots.

2. In this problem we will design a PI controller for a cruise control system, building on the
example shown in class. Use the following transfer function to represent the vehicle and
engine dynamics:

P (s) =
Tba/m

(s + a)(s + c/m)

where b = 25 is the transmission gain, T = 200 is the conversion factor between the throttle
input and steady state torque, a = 0.2 is the engine lag coefficient, m = 1000 kg is the mass
of the car, and c = 50 N s/m is the viscous damping coefficient.

(a) Consider a proportional controller for the car, u = kp(r − y). Assuming a unity gain
feedback controller, this gives

C(s) = kp.

Set kp = 0.1 and compute the steady state error, gain and phase margins, rise time,
overshoot and poles/zeros for the system. Remember that the gain and phase margins
are computed based on the loop transfer function L(s) = P (s)C(s); the remaining
quantities should be computed for the closed loop system.

(b) Consider a proportional + integral controller for the car,

C(s) = kp +
ki

s
.

Fill in the following table (make sure to show your work):



kp ki Stable? gm ϕm Tr Mp

0.5 0.1

0.05 1

0.05 0.001

0.005 0.001

For each entry in the table, plot the pole zero diagram (pzmap) for the closed loop system
and the step response. (Note that the steady state error is zero in each stable case, due
to the integral term in the control law.)

(Suggestion: look for relationships between the various quantities you are computing
and plotting. This problem should give you some insight into the relationship between
some of the quantities.)

3. Continuing the previous problem, we will now insert a small amount of time delay into the
feedback path of the system. A pure time delay of τ seconds satisfies the equation

y(t) = u(t − τ)

This system is a linear input/output system and it can be shown that its transfer function is

G(s) = e−sτ .

Unfortunately, MATLAB is not able to perfectly represent a time delay in this form, and
so we have to use a “Padé approximation”, which gives a constant gain transfer function
with phase that approximates a time delay. Using a 2nd order Padé approximation, we can
approximate our time delay as

G(s) =
1 − τs/2 + (τs)2/12

1 + τs/2 + (τs)2/12

This function can be computed using the pade function in MATLAB (although the numerator
and denominator are scaled slightly differently).

Assume that there is a time delay of τ seconds, which we will insert between the output of
the plant and the controller (as we did in Monday’s lecture).

(a) For the case kp = 0.05, ki = 0.001, insert time delays of τ = 0.25 s and τ = 0.75 s. Using
a Padé approximation, compute the resulting gain and phase margin for each case and
compute the overshoot and settling time (2%) for the step responses.

(b) Repeat part (a) using kp = 0.02, ki = 0.0005 and time delays of 0.75 s and 1.5 s.

(c) Optional: Plot the Nyquist plot for kp = 0.02, Ki = 0.0005, τ = 0.75 (with the exact
time delay, not the Pade approximation).
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1. Consider a closed loop system with the loop transfer function

L(s) =
k

(s + a)(s2 + 2ζω0s + ω2

0
)
.

(a) Assuming that a ≪ ω0 and ζ = 1, sketch the Bode and Nyquist plots for the system,
labeling they key features (in terms of k, a and ω0).

(b) For each of the following parameter sets, use the Nyquist criterion to determine if the
closed loop system is stable and, if so, what the gain, phase and stability margins are:

i. k = 200, a = 1, ζ = 1, ωn = 10

ii. k = 100, a = 1, ζ = 0.1, ωn = 10

iii. k = 100, a = 0, ζ = 1, ωn = 10

iv. k = 80, a = −1, ζ = 1, ωn = 10

Be sure to show the Nyquist plot for each case and show the gain and phase margins on
the Nyquist plots.

2. [DFT 3.1, page 44] Show that for a unity feedback system it suffices to check only two transfer
functions to determine internal stability.

3. [DFT 3.2, page 44] Let

P̂ (s) =
1

10s + 1
Ĉ(s) = k F̂ (s) = 1.

Find the least positive gain k such that the following are all true:

(a) The feedback system is internally stable

(b) |e(∞)| ≤ 0.1 when r(t) is the unit step and n = d = 0.

(c) ‖y‖∞ ≤ 0.1 for all d(t) such that ‖d‖2 ≤ 1 when r = n = 0.

4. [DFT 3.3, page 44] Consider a unity gain feedback system with r = n = 0 and d(t) =
sin(ω(t)1(t). Prove that if the feedback system is internally stable then y(t) → 0 as t → ∞ if
and only if P̂ has a zero at s = iω or Ĉ has a pole at s = iω.

5. (ÅM08, Exercise 9.10) Consider a system whose input/output response is modeled by G(s) =
6(−s + 1)/(s2 + 5s + 6), which has a zero in the right half-plane.

(a) Sketch the Bode plot for the system. (Hint: try sketching these by hand first and use
MATLAB only if you get stuck.)



(b) Compute the step response for the system, and show that the output goes in the wrong
direction initially, which is also referred to as an inverse response.

(c) Compare the response to a minimum phase system by replacing the zero at s = 1 with
a zero at s = −1. Show that the gain curve on the Bode plot is unchanged, but that the
phase curve and step response are (significantly) different.
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