
CALIFORNIA INSTITUTE OF TECHNOLOGY
Control and Dynamical Systems

CDS 110a

R. M. Murray
Fall 2008

Problem Set #6 Issued: 10 Nov 08
Due: 17 Nov 08

Note: In the upper left hand corner of the second page of your homework set, please
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1. Consider a closed loop system with the loop transfer function

L(s) =
k

(s + a)(s2 + 2ζω0s + ω2
0
)
.

(a) Assuming that a ! ω0 and ζ = 1, sketch the Bode and Nyquist plots for the system,
labeling they key features (in terms of k, a and ω0).

(b) For each of the following parameter sets, use the Nyquist criterion to determine if the
closed loop system is stable and, if so, what the gain, phase and stability margins are:

i. k = 200, a = 1, ζ = 1, ωn = 10

ii. k = 100, a = 1, ζ = 0.1, ωn = 10

iii. k = 100, a = 0, ζ = 1, ωn = 10

iv. k = 80, a = −1, ζ = 1, ωn = 10

Be sure to show the Nyquist plot for each case and show the gain and phase margins on
the Nyquist plots.

2. In this problem we will design a PI controller for a cruise control system, building on the
example shown in class. Use the following transfer function to represent the vehicle and
engine dynamics:

P (s) =
Tba/m

(s + a)(s + c/m)

where b = 25 is the transmission gain, T = 200 is the conversion factor between the throttle
input and steady state torque, a = 0.2 is the engine lag coefficient, m = 1000 kg is the mass
of the car, and c = 50 N s/m is the viscous damping coefficient.

(a) Consider a proportional controller for the car, u = kp(r − y). Assuming a unity gain
feedback controller, this gives

C(s) = kp.

Set kp = 0.1 and compute the steady state error, gain and phase margins, rise time,
overshoot and poles/zeros for the system. Remember that the gain and phase margins
are computed based on the loop transfer function L(s) = P (s)C(s); the remaining
quantities should be computed for the closed loop system.

(b) Consider a proportional + integral controller for the car,

C(s) = kp +
ki

s
.

Fill in the following table (make sure to show your work):



kp ki Stable? gm ϕm Tr Mp

0.5 0.1
0.05 1
0.05 0.001
0.005 0.001

For each entry in the table, plot the pole zero diagram (pzmap) for the closed loop system
and the step response. (Note that the steady state error is zero in each stable case, due
to the integral term in the control law.)

(Suggestion: look for relationships between the various quantities you are computing
and plotting. This problem should give you some insight into the relationship between
some of the quantities.)

3. Continuing the previous problem, we will now insert a small amount of time delay into the
feedback path of the system. A pure time delay of τ seconds satisfies the equation

y(t) = u(t − τ)

This system is a linear input/output system and it can be shown that its transfer function is

G(s) = e−sτ .

Unfortunately, MATLAB is not able to perfectly represent a time delay in this form, and
so we have to use a “Padé approximation”, which gives a constant gain transfer function
with phase that approximates a time delay. Using a 2nd order Padé approximation, we can
approximate our time delay as

G(s) =
1 − τs/2 + (τs)2/12

1 + τs/2 + (τs)2/12

This function can be computed using the pade function in MATLAB (although the numerator
and denominator are scaled slightly differently).

Assume that there is a time delay of τ seconds, which we will insert between the output of
the plant and the controller (as we did in Monday’s lecture).

(a) For the case kp = 0.05, ki = 0.001, insert time delays of τ = 0.25 s and τ = 0.75 s. Using
a Padé approximation, compute the resulting gain and phase margin for each case and
compute the overshoot and settling time (2%) for the step responses.

(b) Repeat part (a) using kp = 0.02, ki = 0.0005 and time delays of 0.75 s and 1.5 s.

(c) Optional: Plot the Nyquist plot for kp = 0.02, Ki = 0.0005, τ = 0.75 (with the exact
time delay, not the Pade approximation).
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