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CDS 101

R. M. Murray Problem Set #1 Issued: 29 Sep 08
Fall 2008 Due: 6 Oct 08

Note: In the upper left hand corner of the second page of your homework set, please
put the number of hours that you spent on this homework set (including reading).

1. Astrém and Murray, Exercise 1.3
2. Astrém and Murray, Exercise 1.4

3. Astréom and Murray, Exercise 2.6, parts (a) and (b)
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1. Astrom and Murray, Exercise 1.4

2. Astrom and Murray, Exercise 2.1

3. Consider a damped spring—mass system with dynamics

mg—+cqg+kqg=F.

Let wg = /k/m be the natural frequency and ¢ = ¢/(2v'km) be the damping ratio.

(a)

(d)

Show that by rescaling the equations, we can write the dynamics in the form
G+ 2Cwod + wiq = wiu, (S1.1)
where u = F/k. This form of the dynamics is that of a linear oscillator with natural
frequency wg and damping ratio (.
Show that the system can be further normalized and written in the form
le dZQ

E = Z9, E = —21 — 2(2’2 -+ . (812)

The essential dynamics of the system are governed by a single damping parameter (.
The Q-value defined as @ = 1/2(¢ is sometimes used instead of (.

Show that the solution for the unforced system (v = 0) with no damping (¢ = 0) is given
by

21(7) = 21(0) cos T + 22(0) sin 7, zo(T7) = —21(0) sin T 4 22(0) cos 7.
Invert the scaling relations to find the form of the solution ¢(¢) in terms of ¢(0), ¢(0)
and wp.

Consider the case where ¢ = 0 and u(t) = sinwt, w > wp. Solve for z1(7), the normalized
output of the oscillator, with initial conditions z;(0) = 22(0) = 0 and use this result to
find the solution for ¢(t).

4. Consider the queuing system described in Example 2.10. The long delays created by tempo-
rary overloads can be reduced by rejecting requests when the queue gets large. This allows
requests that are accepted to be serviced quickly and requests that cannot be accommodated
to receive a rejection quickly so that they can try another server. Consider an admission
control system described by

dx x

= \u — X 1
U Mmax_i_l

i u = sat 1) (k(r — x)), (S1.3)



where the controller is a simple proportional control with saturation (sat,s) is defined in
equation (3.9)) and r is the desired (reference) queue length. Use a simulation to show
that this controller reduces the rush-hour-effect and explain how the choice of r affects the
system dynamics. You should choose the parameters of your simulation to match those in
Example 2.10: pimax = 1, A = 0.5 at time 0, increasing to A = 4 at time 20 and returning to
A= 0.5 at time 25.
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1. Astrém and Murray, Exercise 1.5

2. Download the file “cruise_ctrl.md1” from the companion web site. It contains a SIMULINK
model of a simple cruise controller, similar to the one described in Section 1.4. Figure out
how to run the example and plot the vehicle’s speed as a function of time.

(a) Leaving the control gains at their default values, plot the response of the system to a
step input and measure the time it takes for the system error to settle to within 5% of
commanded change in speed (i.e., 0.5 m/s).

(b) By manually tuning the control gains, design a controller that settles at least 50% faster
than the default controller. Include the gains you used, a plot of the closed loop response,
and describe any undesirable features in the solution you obtain.

All plots should included a title, labeled axes (with units), and reasonable axis limits.

3. [Contributed by Mary Dunlop, 2006] The motion of an ideal pendulum is described by
0+ gsinf =0,

where 6 is the angle between the pendulum’s position and vertical, and g is the gravitational
acceleration.

(a) Using the small angle approximation sinf = €, solve for an expression for 6(t), written

in terms of the initial conditions 0(0) = 6y, 6(0) = wy and the parameter g.

(b) Plot the pendulum’s motion in three different environments: Earth (g = 9.8 m/s?),
the moon (g = 1.6 m/s?), and on Temple I-—the comet that the Deep Impact mission
collided with on in July 2005 (g = 0.00004 m/s?). Assume that the pendulum is given
a small initial starting angle 6(0) = 0.05 radians (about 3 degrees) and then released
with no initial velocity (6(0) = 0). Note that this is an idealized equation of motion and
damping is not included, so there are no frictional forces to slow the pendulum down

over time.

(c) If the pendulum is pushed with a force u(t), the equation of motion becomes
0+ gsinf = u(t).

Apply the small angle approximation and assume 6(0) = 6 and 6(0) = 0. Solve for 6(t)
when u(t) = sint.



4. Astrém and Murray, Exercise 2.3

5. Consider the consensus problem described in Example 2.12 with N nodes and a connected
graph describing the sensor network. Show that the quantity

Wik = % > ailh

is constant under the consensus protocol and use this fact to show that if the consensus
protocol converges, then it converges to the average of the initial values of each node. (In
computer programming, qualities such as W are called invariants, and the use of invariants
is an important technique for verifying the correctness of computer programs.)



