

CDS 101/110a: Lecture 8-2 Limits on Performance

Richard M. Murray 19 November 2008

Goals:

- Describe limits of performance on feedback systems
- Introduce Bode's integral formula and the "waterbed" effect
- Show some of the limitations of feedback due to RHP poles and zeros

Reading:

- Åström and Murray, Feedback Systems, Ch 11
- Advanced: Lewis, Chapter 9
- CDS 210: DFT, Ch 6

Algebraic Constraints on Performance

$$H_{er} = \frac{1}{1 + PC} =: S$$

Sensitivity function

$$H_{yn} = \frac{PC}{1 + PC} =: T$$

Complementary sensitivity function

Goal: keep S & T small

- S small ⇒ low tracking error
- T small ⇒ good noise rejection (and robustness [CDS 110b])

Problem: S + T = 1

- Can't make *both* S & T small at the same frequency
- Solution: keep S small at low frequency and T small at high frequency
- Loop gain interpretation: keep L large at low frequency, and small at high frequency

 Transition between large gain and small gain complicated by stability (phase margin)

Bode's Integral Formula and the Waterbed Effect

Bode's integral formula for S = 1/(1+PC) = 1/(1+L):

- Let p_k be the *unstable* poles of L(s) and assume relative degree of $L(s) \ge 2$
- **Theorem**: the area under the sensitivity function is a conserved quantity:

$$\int_0^\infty \log_e |S(j\omega)| d\omega = \int_0^\infty \log_e \frac{1}{|1 + L(j\omega)|} d\omega = \pi \sum_{i=1}^\infty \operatorname{Re} p_i$$

Waterbed effect:

- Making sensitivity smaller over some frequency range requires increase in sensitivity someplace else
- Presence of RHP poles makes this effect worse
- Actuator bandwidth further limits what you can do
- Note: area formula is linear in ω; Bode plots are logarithmic

CDS 101/110, 3 Nov 08

Richard M. Murray, Caltech CDS

Example: Magnetic Levitation

System description

- · Ball levitated by electromagnet
- Inputs: current thru electromagnet
- Outputs: position of ball (from IR sensor)
- States: z z
- Dynamics: F = ma, F = magnetic force generated by wire coil
- See MATLAB handout for details

Controller circuit

- Active R/C filter network
- Inputs: set point, disturbance, ball position
- States: currents and voltages
- Outputs: electromagnet current

CDS 101/110, 3 Nov 08 Richard M. Murray, Caltech CDS

Equations of Motion

Process: actuation, sensing, dynamics

$$m\ddot{z} = mg - k_m (k_A u)^2 / z^2$$
$$v_{ir} = k_T z + v_0$$

- *u* = current to electromagnet
- v_{ir} = voltage from IR sensor

Linearization:

$$P(s) = \frac{-k}{s^2 - r^2}$$
 $k, r > 0$

• Poles at $s = \circ r \Rightarrow$ open loop unstable

Richard M. Murray, Caltech CDS

7

CDS 101/110, 3 Nov 08

Example: Lateral Control of the Ducted Fan

$$H_{xf_1}(s) = \frac{(s^2 - mgl)}{s^2(Js^2 + ds + mgl)}$$

- Poles: 0, 0, $-\sigma \pm j \omega_d$
- Zeros: $\pm \sqrt{mgl}$

Source of non-minimum phase behavior

- To move left, need to make $\theta > 0$
- To generate positive θ , need $f_1 > 0$
- Positive f₁ causes fan to move right initially
- Fan starts to move left after short time (as fan rotates)

CDS 101/110, 3 Nov 08

Richard M. Murray, Caltech CDS

Stability in the Presence of Zeros

Loop gain limitations

• Poles of closed loop = poles of 1 + L. Suppose $C = k n_c/d_c$, where k is the gain of the controller

$$1 + L = 1 + k \frac{n_c n_p}{d_c d_p} = \frac{d_c d_p + k n_c n_p}{d_c d_p}$$

- For large k, closed loop poles approach open loop zeros
- RHP zeros limit maximum gain ⇒ serious design constraint!

Root locus interpretation

- Plot location of eigenvalues as a function of the loop gain k
- Can show that closed loop poles go from open loop poles (k = 0) to open loop zeros (k = \infty)

CDS 101/110, 3 Nov 08

Richard M. Murray, Caltech CDS

10

9

Additional performance limits due to RHP zeros

Another waterbed-like effect: look at maximum of H_{er} over frequency range:

$$M_1 = \max_{\omega_1 \le \omega \le \omega_2} |H_{er}(j\omega)| \qquad \qquad M_2 = \max_{0 \le \omega \le \infty} |H_{er}(j\omega)|$$

Thm: Suppose that P has a RHP zero at z. Then there exist constants c_1 and c_2 (depending on ω_1 , ω_2 , z) such that $c_1 \log M_1 + c_2 \log M_2 \ge 0$

- M_1 typically << 1 \Rightarrow M_2 must be larger than 1 (since sum is positive)
- If we increase performance in active range (make M_1 and H_{er} smaller), we must lose performance (Her increases) some place else
- Note that this affects peaks not integrals (different from RHP poles)

 $H(s) = \frac{(s^2 - mgl)}{s^2(Js^2 + ds + mgl)}$ • Poles: 0, 0, $-\sigma \pm j \omega_d$ • Zeros: $\pm \sqrt{mgl}$

CDS 101/110, 3 Nov 08

Richard M. Murray, Caltech CDS

П

Summary: Limits of Performance

Many limits to performance

• Algebraic: S + T = 1

RHP poles: Bode integral formula

• RHP zeros: Waterbed effect on peak of S

Main message: try to avoid RHP poles and zeros whenever possible (eg, re-design)

$$\int_0^\infty \log_e |S(j\omega)| d\omega = \int_0^\infty \log_e \frac{1}{|1+L(j\omega)|} d\omega = \pi \sum \operatorname{Re} p_k$$
 Sensitivity Function

CDS 101/110, 3 Nov 08 Richard M. Murray, Caltech CDS 12

```
Nov 16, 08 15:32
                                   L8_2_maglev.m
                                                                        Page 1/2
% L9 1 maglev.m - MATLAB code for lecture 9.1
% RMM, 24 Nov 03
% Files needed: none
용용
%% Magnetic Levitation System
용용
용용
    z1 = position of ball from centerline (down is positive)
용용
    z2 = velocity of ball
용용
    Vy = output (position sensor) voltage
용용
    Vu = input (electromagnet) voltage
용용
용용
   The dynamics are of the form x dot = f(x, u), y = h(x):
용용
     f = [g-km/m*(kA*Vu)^2/z1^2]
용용
용용
용용
용용
     h = kT*z1+v0
용용
% Parameter values for system
kT = 613.65;
                                % gain between position and voltage
v0 = -16.18;
                                % voltage offset at zero position
m = 0.2;
                                % mass of ball, kg
g = 9.81;
                                % gravitational constant
kA = 1;
                                % electromagnet conductance
km = 3.13e-3 * m/2 / kA^2;
                                % gain on magnetic attractive force
% Equilibrium point calculation
z10=-v0/kT;
z20=0;
Vu0=1/kA*sqrt(z10^2*m*q/km);
% Compute linearization around the equilibrium
A = [0, 1; 2*km/m*(kA*Vu0)^2/(z10^3), 0];
B = [0; -2*km/m*(kA^2)*Vu0/(z10^2)];
C = ikT 01:
D = 0;
% create a MATLAB LTI system from this representation
maqP = ss(A, B, C, D);
%% Maglev controller circuit
%% Note: these values are only approximately equivalent to what exists
%% in the circuit.
용용
k1 = 0.5:
                                        % gain set by gain pot
R1 = 22000;
                                        % Internal resistor
R2 = 22000:
                                        % Resistor plug-in
R = 2000; C = 1e-6;
                                        % RC plug-in
% Controller based on analog circuit
magC1 = -tf([(R1+R)*C 1], [R*C 1])*k1*R2/R1;
magL1 = magP*magC1;
                                        % loop transfer function
magS1 = feedback(1, magP*magC1);
                                        % sensitivity function
magT1 = feedback(magP*magC1, 1);
                                        % closed loop response
figure(1); nyquist(magP, magL1);
                                        % Nyquist plots
figure(2); bode(magP, magC1, magL1);
                                        % Open loop Bode plot
%% Now try to improve the performance by increasing DC gain
용용
```

```
Printed by Richard Murray
                                   L8 2 maglev.m
 Nov 16, 08 15:32
                                                                        Page 2/2
magC2 = magC1*5;
                                        % increased gain
magL2 = magP*magC2;
                                        % loop transfer function
magS2 = feedback(1, magP*magC2);
                                        % sensitivity function
magT2 = feedback(magP*magC2, 1);
                                        % closed loop response
magC3 = magC1*20;
                                        % increased gain
magL3 = magP*magC3;
                                        % loop transfer function
magS3 = feedback(1, magP*magC3);
                                        % sensitivity function
magT3 = feedback(magP*magC3, 1);
                                        % closed loop response
figure(3); step(magT1, magT2, magT3);
                                        % Step response
figure(4); bode(magS1, magS2, magS3);
                                        % Closed loop Bode plot
```