

CDS 101/110a: Lecture 8-1 Frequency Domain Design

Richard M. Murray 17 November 2008

Goals:

- Describe canonical control design problem and standard performance measures
- Show how to use "loop shaping" to achieve a performance specification
- Work through a detailed example of a control design problem

Reading:

- Åström and Murray, Feedback Systems, Ch 11
- Advanced: Lewis, Chapter 12
- CDS 210: DFT, Chapters 4 and 6

Frequency Domain Performance Specifications

Specify bounds on the loop transfer function to guarantee desired performance

$$L(s) = P(s)C(s)$$

$$H_{er} = \frac{1}{1+L} \qquad H_{yr} = \frac{L}{1+L}$$

Steady state error:

$$H_{er}(0) = 1/(1+L(0)) \approx 1/L(0)$$

- ⇒ zero frequency ("DC") gain
- Bandwidth: assuming ~90° phase margin

$$\frac{L}{1+L}(j\omega_c) \approx \left| \frac{1}{1+j} \right| = \frac{1}{\sqrt{2}}$$

- ⇒ sets crossover freq
- Tracking: X% error up to frequency $\omega_t \Rightarrow$ determines gain bound (1 + PC > 100/X)

Relative Stability

Relative stability: how stable is system to disturbances at certain frequencies?

- System can be stable but still have bad response at certain frequencies
- Typically occurs if system has low phase margin ⇒ get resonant peak in closed loop (M_r) + poor step response
- Solution: specify minimum phase margin. Typically 45° or more

CDS 101/110, 17 Nov 08

Richard M. Murray, Caltech CDS

3

Canonical Control Design Problem

$$\begin{bmatrix} \eta \\ y \\ u \end{bmatrix} = \begin{bmatrix} \frac{P}{1+PC} & -\frac{PC}{1+PC} & \frac{PCF}{1+PC} \\ \frac{P}{1+PC} & \frac{1}{1+PC} & \frac{PCF}{1+PC} \\ -\frac{PC}{1+PC} & -\frac{C}{1+PC} & \frac{CF}{1+PC} \end{bmatrix} \begin{bmatrix} d \\ n \\ r \end{bmatrix}$$
 between the quantities • Keep L=PC large for good performance (H_{er} << 1) • Keep L=PC small for good

Noise and disturbances

- *d* = process disturbances
- *n* = sensor noise
- Keep track of transfer functions between all possible inputs and outputs

Design represents a tradeoff

- noise rejection ($H_{vn} << 1$)

F = 1: Four unique transfer functions define performance ("Gang of Four")

- Stability is always determined by 1/(1+PC) assuming stable process & controller
- Numerator determined by forward path between input and output

More generally: 6 primary transfer functions; simultaneous design of each

Two Degree of Freedom Design

Sensitivity Function

$$S = \frac{1}{1 + PC}$$

Sensitivity function

$$T = \frac{PC}{1 + PC}$$

 $T = rac{PC}{1 + PC}$ Complementary sensitivity

$$PS = \frac{P}{1 + PC}$$

Load sensitivity

$$CS = \frac{C}{1 + PC}$$

Noise sensitivity

Typical design procedure

- Design *C* to provide good load/noise response
- Design *F* to provide good response to reference

Algebraic Constraints on Performance

$$H_{er} = \frac{1}{1 + PC} =: S$$

Sensitivity function

$$H_{yn} = \frac{PC}{1 + PC} =: T$$

Complementary sensitivity function

Goal: keep S & T small

- S small ⇒ low tracking error
- T small ⇒ good noise rejection (and robustness [CDS 110b])

Problem: S + T = 1

- Can't make both S & T small at the same frequency
- Solution: keep S small at low frequency and T small at high frequency
- Loop gain interpretation: keep L large at low frequency, and small at high frequency

 Transition between large gain and small gain complicated by stability (phase margin)

Loop Shaping Revisited

Disturbance rejection
$$H_{ed} = \frac{P}{1+L}$$

- Would like H_{ed} to be small make \Rightarrow large L(s)
- Typically require this in low frequency range

High frequency measurement noise
$$H_{un} = \frac{L}{P(1+L)}$$

- Want to make sure that H_{un} is small (avoid amplifying noise) \Rightarrow small L(s)
- Typically generates constraints in high frequency range

Robustness: gain and phase margin

- Focus on gain crossover region: make sure the slope is "gentle" at gain crossover
- Fundamental tradeoff: transition from high gain to low gain through crossover

Lead compensation

Use to increase phase in frequency band

- Effect: lifts phase by increasing gain at high frequency
- Very useful controller; increases PM
- Bode: add phase between zero and pole
- Nyquist: increase phase margin

Process Inversion

Simple trick: invert out process

- Write all performance specs in terms of the desired loop transfer function
- Choose *L*(*s*) that satisfies specflications
- Choose controller by inverting *P*(*s*)

$$C(s) = L(s)/P(s)$$

Pros

- Very easy design process
- L(s) = 1/s often works very well
- Can be used as a first cut, with additional shaping to tune design

Cons

- High order controllers (at least same order as the process you are controlling)
- Requires "perfect" model of your process (since you are inverting it)
- Does not work if you have right half plane poles or zeros (get internal instability)

$$S = \frac{1}{1 + PC} \qquad T = \frac{PC}{1 + PC} \qquad PS = \frac{P}{1 + PC} \quad CS = \frac{C}{1 + PC}$$

Example: Control of Vectored Thrust Aircraft

System description

- Vector thrust engine attached to wing
- Inputs: fan thrust, thrust angle (vectored)
- Outputs: position and orientation
- States: x, y, θ +
 derivatives
- Dynamics: flight aerodynamics

Control approach

- Design "inner loop" control law to regulate pitch (θ) using thrust vectoring
- Second "outer loop" controller regulates the position and altitude by commanding the pitch and thrust
- Basically the same approach as aircraft control laws

Performance Specification and Design Approach

Performance Specification

- ≤ 1% steady state error
 - Zero frequency gain > 100
- ≤ 10% tracking error up to 10 rad/sec
 - Gain > 10 from 0-10 rad/sec
- ≥ 45° phase margin
 - Gives good relative stability
 - Provides robustness to uncertainty

Design approach

- Open loop plant has poor phase margin
- Add phase lead in 5-50 rad/sec range
- Increase the gain to achieve steady state and tracking performance specs
- Avoid integrator to minimize phase

$$P(s) = \frac{r}{Js^2 + ds + mgl}$$

$$C(s) = K \frac{s+a}{s+b}$$

$$a = 25$$

$$b = 300$$

$$K = 15 \times 300$$

Control Design and Analysis

Select parameters to satisfy specs

- Place phase lead in desired crossover region (given by desired BW)
- Phase lead peaks at 10X of zero location
- Place pole sufficiently far out to insure that phase does not decrease too soon
- Set gain as needed for tracking + BW
- Verify controller using Nyquist plot, etc

L(s)

bode

Control Verification: Gang of 4

Remarks

- Check each transfer function to look for peaks, large magnitude, etc
- Example: Noise sensitivity function (*CS*) has very high gain; step response verifies poor step response
- Implication: controller amplifies noise at high frequency ⇒ will generate lots of motion of control actuators (flaps)
- Fix: roll off the loop transfer function faster (high frequency pole)

Summary: Loop Shaping

Loop Shaping for Stability & Performance

Steady state error, bandwidth, tracking

Main ideas

- Performance specs give bounds on loop transfer function
- Use controller to shape response
- Gain/phase relationships constrain design approach
- Standard compensators: proportional, lead, PI

