CDS 101/110a: Lecture 7-1
Loop Analysis of Feedback Systems |

Richard M. Murray
10 November 2008

Goals:
» Show how to compute closed loop stability from open loop properties
» Describe the Nyquist stability criterion for stability of feedback systems

* Define gain and phase margin and determine it from Nyquist and Bode
plots

Reading:
e Astrdm and Murray, Feedback Systems, Ch 9
* Advanced: Lewis, Chapters 7
« CDS 210: DFT,Ch 3




Review From Last Week
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Closed Loop Stability

Q: how do open loop dynamics affect the
_,Ggﬂ Ps) closed loop stability?

e Given open loop transfer function C(s)P(s)
determine when system is stable

v
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C(s)

-1 |«

Brute force answer: compute poles closed loop transfer function

__pCc - mn » Poles of H,, = zeros of | + PC
" 1+PC dd +npn, - Easy to compute, but not so good for design

P(s)C(s)

Alternative: look for conditions on PC
that lead to instability
o Example: if PC(s) = -1 for some s = iw,
then system is not asymptotically stable

Magnitude (dB)

e Condition on PC is much nicer because é’
we can design PC(s) by choice of C(s) 2
* However, checking PC(s) = -1 is not o=
enough; need more sophisticated check iy | 0
Frequency (rad/sec)
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Game Plan: Frequency Domain Design
Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable and we get good

performance
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Bode Diagram

« Poles of H,, = zeros of 1 + PC

« Would also like to “shape” H,, to specify
performance at differenct frequencies
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* Low frequency range:

PC

PC? 1 = ~
1+ PC

(good tracking)

e Bandwidth: frequency at
which closed loop gain = %
=> open loop gain = 1

* |dea: use C(s) to shape PC
(under certain constraints)

* Need tools to analyze stability
and performance for closed
loop given PC

1




J Nyquist Criterion

e u
C(s) —’(%)—’ P(s)

-1

v
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Determine stability from (open) loop
transfer function, L(s) = P(s) C(s).

e Use “principle of the argument” from
complex variable theory (see reading)

Thm (Nyquist). Consider the Nyquist plot
for loop transfer function L(s). Let

P # RHP poles of L(s)
N # clockwise encirclements of -1
Z # RHP zeros of 1 + L(s)
Then
Z=N+P
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Nyquist “D”
contour

Take limit as
r-+0,R— o

Trace from -oco
to +oo along
imaginary axis

Trace
frequency
response for
L(s) along the
Nyquist “D”
contour
Count net # of
clockwise
encirclements
of the -1 point




Simple Interpretation of Nyquist

d Basic idea: avoid positive feedback
e |f L(s) has 180° phase (or greater)
€ C(s) u P(s) .V and gain greater than 1, then signals
are amplified around loop

e Use when phase is monotonic
-1 e General case requires Nyquist

Can generate Nyquist plot from Bode plot + reflection around real axis

Bode Diagrams Nyquist Diagrams
From: U(1)

From: U(1) 3
T

Phase (deg); Magnitude (dB)
o 45
Imaginary Axis
To: Y(1)
o

To: Y(1)
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Frequency (rad/sec) Real Axis
ambode(sys) [or bode(sys) in dB] amnyquist(sys)
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Example: Proportional + Integral* speed controller
d

2000

e % u
C(s) P(s)

1500 |
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Imaginary Axis
To: Y(1)
o

-500 |
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> )
Nyquist Diagrams -1
From: U(1)
| 1/m v
P(s) = X
s+b/m s+a
K.
C(s)=K o+ —
s+0.01
Remarks
o N=0,P=0=Z7Z=0 (stable)
® Need to zoom in to make sure
there are no net encirclements
e Note that we don’t have to
R R R | compute closed loop response
Real Axis

* slightly modified; more on the design of this compensator in next week’s lecture

CDS 101/110, 10 Nov 08

Richard M. Murray, Caltech CDS




More complicated systems

What happens when open loop plant has RHP poles?
e 1 + PC has singularities inside D countour = these must be taken into account

Nyquist Diagrams
From: U(1)
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L(s) = X |
s—05 s +s5+1 Real Axis
N=-1,P=1= 7= N+P =0 (stable)
unstable pole
1 s +1

1+L  (s+0.35)(s+0.07+1.2,)(s +0.07 - 1.2)
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Comments and cautions

Why is the Nyquist plot useful?
e Old answer: easy way to compute stability (before computers and MATLAB)

e Real answer: gives insight into stability and robustness; very useful for reasoning
about stability

x «  chose contour to
A avoid poles on axis

. need to carefully

AV4
TZNT
~_7

° - > compute Nyquist L .
, plot at these points
¥ « evaluate H(e+0j) to

x ' determine direction

""" w=0%

Cautions with using MATLAB
e MATLAB doesn’t generate portion of plot for poles on imaginary axis
e These must be drawn in by hand (make sure to get the orientation right!)
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Robust stability: gain and phase margins

Nyquist Diagram

Nyquist plot tells us if closed loop is stable,
but not how stable

Gain margin
¢ How much we can modify the loop gain
and still have the system be stable

e Determined by the location where the loop
transfer function crosses 180° phase

Phase margin

e How much we can add “phase delay” and
still have the system be stable Bode Diagram

Y Determ|ned by the phase at Wh|Ch the |Oop Gm=7.005 dB (at 0.3464| rad/sec), Pm=18.754 deg. (at 0.26853 rad/sec)

transfer function has unity gain o

Bode plot interpretation
® | ook for gain = 1, 180° phase crossings
e MATLAB: margin(sys)

Phase (deg); Magnitude (dB)
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Example: cruise control

P(s) = 1/m y r
e u s+b/m s+a
C(s) P(s)

> )V %
Cs)=K +———
()=, s +0.01
-G(s) Gls) = 10
Effect of additional sensor dynamics (5) = s+10

o New speedometer has pole at s = 10 (very fast); problems develop in the field
e What's the problem? A: insufficient phase margin in original design (not robust)

Bode Diagram e
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Preview: con’rg'ol design
1/m r

P(s) = X
e u s+b/m s+a
C(s) P(s) > ) )
C K +—i
(S)@E ’ s+o.01)
10

-G(s) [
Approach: Increase phase margin Gls) = s+10

e Increase phase margin by reducing gain = can accommodate new sensor dynamics

e Tradeoff: lower gain at low frequencies = less bandwidth, larger steady state error

/‘\ Nyquist plots

Bode Diagram
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Summary: Loop Analysis of Feedback Systems

Bode Diagram

d 5 Gm=7.005 dB (at 0'346,‘“ rad/sec), Pm=18.754 dleg. (at 0.26853 rad/sec)
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