
CDS 101/110a: Lecture 7-1
Loop Analysis of Feedback Systems

Richard M. Murray
10 November 2008

Goals:
 Show how to compute closed loop stability from open loop properties
 Describe the Nyquist stability criterion for stability of feedback systems
 Define gain and phase margin and determine it from Nyquist and Bode 

plots

Reading: 
 Åström and Murray, Feedback Systems, Ch 9 
 Advanced: Lewis, Chapters 7
 CDS 210: DFT, Ch 3
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Review From Last Week
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Closed Loop Stability
Q: how do open loop dynamics affect the 
closed loop stability?
• Given open loop transfer function C(s)P(s) 

determine when system is stable

Brute force answer: compute poles closed loop transfer function

Alternative: look for conditions on PC 
that lead to instability
 Example: if PC(s) = -1 for some s = iω, 

then system is not asymptotically stable
 Condition on PC is much nicer because

we can design PC(s) by choice of C(s)
 However, checking PC(s) = -1 is not 

enough; need more sophisticated check

• Poles of Hyr = zeros of 1 + PC 
• Easy to compute, but not so good for design

P(s)C(s)
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Game Plan: Frequency Domain Design
Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable and we get good 
performance

 Low frequency range:

(good tracking)
 Bandwidth: frequency at 

which closed loop gain = ½ 
⇒ open loop gain ≈ 1

 Idea: use C(s) to shape PC
(under certain constraints)

 Need tools to analyze stability 
and performance for closed 
loop given PC

• Poles of Hyr = zeros of 1 + PC 
• Would also like to “shape” Hyr to specify

performance at differenct frequencies
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Nyquist Criterion

Determine stability from (open) loop 
transfer function, L(s) = P(s)C(s). 
• Use “principle of the argument” from 

complex variable theory (see reading)

Thm (Nyquist).  Consider the Nyquist plot 
for loop transfer function L(s).  Let
 P # RHP poles of L(s)
 N # clockwise encirclements of -1
 Z  # RHP zeros of 1 + L(s)
Then

Z = N + P

• Nyquist “D” 
contour

• Take limit as 
r → 0, R → ∞

• Trace from −1 
to +1 along 
imaginary axis

• Trace 
frequency 
response for 
L(s) along the 
Nyquist “D” 
contour

• Count net # of 
clockwise 
encirclements 
of the -1 point
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Simple Interpretation of Nyquist
Basic idea: avoid positive feedback
• If L(s) has 180˚ phase (or greater) 

and gain greater than 1, then signals 
are amplified around loop

• Use when phase is monotonic
• General case requires Nyquist

ambode(sys) [or bode(sys) in dB] amnyquist(sys)

Can generate Nyquist plot from Bode plot  + reflection around real axis
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Example: Proportional + Integral* speed controller

* slightly modified; more on the design of this compensator in next week’s lecture

Remarks

• N = 0, P = 0 ⇒ Z = 0 (stable)

• Need to zoom in to make sure 
there are no net encirclements

• Note that we don’t have to 
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More complicated systems
What happens when open loop plant has RHP poles?
• 1 + PC has singularities inside D countour ⇒ these must be taken into account
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Comments and cautions
Why is the Nyquist plot useful?
• Old answer: easy way to compute stability (before computers and MATLAB)
• Real answer: gives insight into stability and robustness; very useful for reasoning 

about stability

Nyquist plots for systems with poles on the jω axis

Cautions with using MATLAB
• MATLAB doesn’t generate portion of plot for poles on imaginary axis
• These must be drawn in by hand (make sure to get the orientation right!)

• chose contour to 
avoid poles on axis

• need to carefully 
compute Nyquist 

plot at these points
• evaluate H(ε+0i) to

determine direction
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Robust stability: gain and phase margins
Nyquist plot tells us if closed loop is stable, 
but not how stable

Gain margin
• How much we can modify the loop gain 

and still have the system be stable
• Determined by the location where the loop 

transfer function crosses 180˚ phase

Phase margin
• How much we can add “phase delay” and 

still have the system be stable
• Determined by the phase at which the loop 

transfer function has unity gain

Bode plot interpretation
• Look for gain = 1, 180˚ phase crossings
• MATLAB: margin(sys)

Nyquist Diagram

-1.5 -1 -0.5 0 0.5 1 1.5
-3

-2

-1

0

1

2

3

Frequency (rad/sec)

Ph
as

e 
(d

eg
); 

M
ag

ni
tu

de
 (d

B)

Bode Diagram

-100

-50

0

50

10-2 10-1 100 101
-300

-200

-100

0

Gm=7.005 dB (at 0.34641 rad/sec), Pm=18.754 deg. (at 0.26853 rad/sec)



Richard M. Murray, Caltech CDSCDS 101/110, 10 Nov 08 11

+

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-1.5

-1

-0.5

0

0.5

1

1.5
Nyquist Diagram

Real Axis

Im
ag

in
ar

y A
xis

-150

-100

-50

0

50

100

M
ag

ni
tu

de
 (d

B)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-270

-225

-180

-135

-90

-45

0

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (rad/sec)

Example: cruise control

Effect of additional sensor dynamics
• New speedometer has pole at s = 10 (very fast); problems develop in the field

• What’s the problem?  A: insufficient phase margin in original design (not robust)

Nyquist plots
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Preview: control design

Approach: Increase phase margin

• Increase phase margin by reducing gain ⇒ can accommodate new sensor dynamics

• Tradeoff: lower gain at low frequencies ⇒ less bandwidth, larger steady state error
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Summary: Loop Analysis of Feedback Systems

• Nyquist criteria for loop stability
• Gain, phase margin for robustness
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Thm (Nyquist).  
 P # RHP poles of L(s)
 N # CW encirclements
 Z  # RHP zeros

Z = N + P
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