

	Transfer Function Properties
Thm.	The <i>transfer function</i> for a linear system $\Sigma = (A, B, C, D)$ is given by
	$G(s) = C(sI - A)^{-1}B + D \qquad s \in \mathbb{C}$
Thm. prope	The transfer function $G(s)$ corresponding to $\Sigma = (A, B, C, D)$ has the following rties:
	(s) is a ratio of polynomials $n(s)/d(s)$ where $d(s)$ is the characteristic equation for e matrix A and $n(s)$ has order less than or equal to $d(s)$.
● Tł	ne steady state frequency response of Σ has gain $ G(j\omega) $ and phase arg $G(j\omega)$:
	$\begin{split} u &= A\sin(\omega t) \\ y &= G(i\omega) A\sin(\omega t + \arg G(i\omega)) + \text{transients} \end{split}$
Rema	arks
• Fo	ormally, can show that $G(s)$ is the Laplace transform of the impulse response of
-	$F = G(s)u^{n}$ is formally $Y(s) = G(s)U(s)$ where $Y(s)$ and $U(s)$ are the Laplace transform $f(y(t))$ and $u(t)$. (Multiplication in the Laplace domain corresponds to convolution.)

