CDS 101/110a: Lecture 6-1
Transfer Functions

Richard M. Murray
3 November 2008

Goals:
* Motivate and define the input/output transfer function of a linear system
* Understand the relationships among frequency response (Bode plot),
transfer function, and state-space model
* Introduce block diagram algebra for transfer functions of interconnected
systems

Reading:
« Astrém and Murray, Feedback Systems, Ch 8
* Advanced: Lewis, Chapters 3-4
* CDS 210: DFT, Chapter 2

Frequency Domain Modeling

Defn. The frequency response of a linear system is the relationship between the gain and
phase of a sinusoidal input and the corresponding steady state (sinusoidal) output.
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u = Asin(wt) y = Bsin(w? +¢)

Frequency Response

Bode plot (1940; Henrik Bode)
* Plot gain and phase vs input frequency
* Gain is plotting using log-log plot
* Phase is plotting with log-linear plot

* Can read off the system response to a
sinusoid — in the lab or in simulations

P(@) = * Linearity = can construct response to
180
(deg) any input (via Fourier decomposition)
-270 . . .
* Key idea: do all computations in terms of
560 . gain and phase (frequency domain)
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Transmission of Exponential Signals

ot _itwt __

Exponential signal: ¢ = ()t — ¢7teit — ¢ (cos wt + i sin wt)
e Construct constant inputs + sines/cosines by linear combinations

- Constant: u(t) = ¢ = ce®

- < id- — : _ D (pwt _ —iwt 1 ‘1
Sinusoid: u(t) = Asin(wt) % (e e ™" . o /\ A
e Exponential response can be computed via ' 05 v \/
the convolution equation % 2 B e
t X X
z(t) = eMz(0) + / eAt=T) BesT dr : 2
0 . 05/ \'~ _ ~ 10 - //\
:eAtl‘(O)—|—€At(SI—A)71€(517A)T B > 0 \/((\‘,< > o,v"‘\\/
=0 05t -10 N
= eAt(I,‘(O) + eAt(SI — A>_1 (e(SI—A)t _ [)B o 5 ] 10 15 20 5 } 0 15

= ¢4 (2(0) = (sT = 4)7'B) + (sI — 4) ' Be!

y(t) = Cx(t) + Du(t)
= CeMt (x(O) ~(sI - A)—lB) n (0(51 _A)'B+ D)est
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Transfer Function and Frequency Response

Exponential response of a linear state space system
y(t) = Cet (x(O) ~(sI— A)’lB) v (0(81 _A)'B+ D) et
transient steady state

Transfer function .
Common transfer functions

e Steady state response is proportional to 1
exponential input => look at input/output ratio y=u B
® G(s) =C(sI — A)"'B + D is the transfer -
function between input and output y=u §
1
ytay=u —
Frequency response sta
A ‘ . 1
u(t) = Asinwt = Z(e“"t — e ) y=u 2
A . ) 1
(1) = = (G(iw)e™! — G(—iw)e ™t T ; 2y, — -
yoo() = 3 (G(iw) (—iw)e™") R e TTWERT
= A |G(iw)| sin(wt + arg G(iw)) L
gain phase y=kpu+kgi+ki[u k,,+kds+;’
y(t) =u(t—1) e’ ™
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Example: Electrical Circuits

~ X = 10°
Vi <J+ > o Uout ak . G(S) 3 10°

v ) sta , \
10

Circuit dynamics (Kirchoff’s laws):
v — v o UV — V2
Ri R
va _ RyG(s) _ Roak
V1 - Ry + Ry + RlG(S) N Riak + (R1 + RQ)(S + CL).

and vy = G(s)v

e Algebraic manipulation can be used as long as we assume exponential signals and
all of the components (blocks) are linear

e Transfer function between input and output hows gain-bandwidth tradeoff
e Homework: derive transfer function for a PI controller using an op amp
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Transfer Function Properties
Thm. The transfer function for a linear system >=(A,B,C,D) is given by
G(s)=C(sI —A)'B+D seC
Thm. The transfer function G(s) corresponding to ¥=(A,B,C,D) has the following
properties:

® H(s) is a ratio of polynomials n(s)/d(s) where d(s) is the characteristic equation for
the matrix A and n(s) has order less than or equal to d(s).

® The steady state frequency response of Z has gain |G(jw)| and phase arg G(jw):

u = Asin(wt)
y = |G(iw)|Asin(wt + arg G(iw)) + transients

Remarks
e Formally, can show that G(s) is the Laplace transform of the impulse response of
e “y=G(s)u” is formally Y(s)=G(s)U(s) where Y(s) and U(s) are the Laplace transforms
of y(f) and u(t). (Multiplication in the Laplace domain corresponds to convolution.)

CDS 101/110,3 Nov 08 Richard M. Murray, Caltech CDS



Series Interconnections

Q: what happens when we connect two systems together in series?

U, X, =Ax +Bu, | N U | x,=4x,+B,u, Y2
—> > —

n=Cx + Dy, ¥, =C,x, + Dyu,

| § Yy =818 Ax
_/\ y =g Asin(wt +¢;) _/\ sin(w? + ¢, +9,)

u = Asin(wt) {

:

Froquecy (asec)

A: Transfer functions multiply
. . U U, =), W2
e Gains multiply G1(s) Ga(s)
o Phases add
e Generally: transfer functions well

formulated for frequency domain u, Yo = Ga(s)G1(s)uy
interconnections —  G2(s)Gi(s) p——
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Feedback Interconnection

r u X=u y r u 1 Y
y=x §
—a |« —a
State space derivation Transfer function derivation
t=u=r—ay=—azr+r y:g:r—ay
y=z s . s
y = = G(s)r
Frequency response r = Asin(wt) sta
Frequency response
Yy = ‘1 sin (wt —tan~! (E))
Va2 + w? a y = |G(iw)|sin(wt + £G(iw))
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Poles and Zeros

x = Ax + Bu H(s)= % * Roots of d(s) are called poles of H(s)
S
=Cx+D * Roots of n(s) are called zeros of H(s
yE s d(s) = det(sT — A) () (s)
Poles of H(s) determine the stability of the (closed loop) system

e Denominator of transfer function = characteristic polynomial of state space
system

® Provides easy method for computing stability of systems
¢ Right half plane (RHP) poles (Re > 0) correspond to unstable systems

Zeros of H(s) related to frequency ranges with limited transmission
e A pure imaginary zero at s=jw, blocks any output at that frequency (G(jw,) = 0)

e Zeros provide limits on performance, especially RHP zeros (more on this later)

2 2

s*+bs+b, pzmap £
H(s)=k 1 3 2 —_— 2
S +as +a,s +as+a, £ o2
-0.4

-0.6 e}

0.8 x
A 06 02 02 06 1
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Example: Coupled Masses

“ | "o 0.04
4| ' N J( o 5* +0.08s% +0.80165” +0.0325 +0.12
WAWWVYW\’ o 0.25” +0.008s +0.08
m ©/ 75740085 +0.80165” +0.0325 +0.12

Frequency Response

Poles (H,,.and H,,) .
e -0.0200 + 0.7743; s )
e -0.0200 + 0.4468; :

g

Zeros (H, ) o
e -0.0200 + 0.6321;

Interpretation ? e
e Zeros in H,, give low £

response at w = 0.6321 360

0.1 1 10
Frequency (rad/sec)
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Control Analysis and Design Using Transfer Functions

disturbance d
e u
ref Contl"0|"é>‘ System > r C(s) "é}" P(s) e

-1 e -1

Transfer functions provide a method for “block diagram algebra”
e Easy to compute transfer functions between various inputs and outputs

- H,(s) is the transfer function between the reference and the error

- H,(s) is the transfer function between the disturbance and the error

Transfer functions provide a method for performance specification

e Since transfer functions provide frequency response directly, it is convenient
to work in the “frequency domain”

- H,(s) should be small in the frequency range 0 to 10 Hz (good tracking)
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Block Diagram Algebra

Basic idea: treat transfer functions as multiplication, write down equations

d
=P
r - C(s) ﬂé—)i P(s) >V Y (s)u
u=d+C(s)e
e=r—y
-1 |e
Manipulate equations to compute desired signals
e=sr-y (I+ P(s)C(s))e =r—P(s)d Note: linearity
=r—P(s)u 1 P(s) “ gives super-
e = r— position of terms
= 1= Pis)d +C(s)e) 1+ P(s)C(s) 1+ P(s)C(s)
Her Hed

Algebra works because we are working in frequency domain
¢ Time domain (ODE) representations are not as easy to work with
e Formally, all of this works because of Laplace transforms (see book)

CDS 101/110,3 Nov 08 Richard M. Murray, Caltech CDS 12



Block Diagram Algebra

Type Diagram Transfer function
u Y bz nn
. 1 1 2 _ _ M
Series — [—Iylu1 u Yoty — H}’z“l - H)’Z“ZH.VWI - dd
2 142
u Hylul v nldz + nZdl
! 3 REL] = L] N =
Parallel dd,
H)’z“l
r u
1 B M nd
Feedback i H = ity — 142
eedbac nr
1 + H,Vlu,Hyzuz nln2 + dle
oty
Vs U,

® These are the basic manipulations needed; some others are possible

e Formally, could work all of this out using the original ODEs (= nothing really new)
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MATLAB manipulation of transfer functions

Creating transfer functions
® [num, den] = ss2tf(A, B, C, D)
® sys = tf(num, den)

e num,den=[1ab]—=s2+as+b

Interconnecting blocks

® sys= series(sys1, sys2), parallel, feedback

Computing poles and zeros
® pole(sys), zero(sys)
® pzmap(sys)

1/0 response
® step(sys), bode(sys)
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» tf(sys)
Transfer function:

s"2+02s+1
1
0.8 x
06 o
x
2 o4
< o2
g o
E o2
0.4 x
0.6 [e}
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Example: Engine Control of a GM Astro
1

7

J,; s+ B,

r
T + D Kr .
¢ '_\r Js(J,s* +Bs+K) >,

Kr
HG,Te (S) = 3 2
JJs +J,Bs” +(J K+ KJ,)s+ KB,

CDS 101/110,3 Nov 08 Richard M. Murray, Caltech CDS

Summary: Frequency Response & Transfer Functions

X=Ax+Bu
u=Asin(wt) —| y=Cr+Du [— Yss = A|G(iw)[x
x(0)=0 sin(wt + arg G(iw))
o \4 G(s)=C(sI —A)'B+D
E L= Gaus = Gy Cyros = n1ng
g dydy
F 1laltr a2 7Y .
| = » >
m s s
e u
J CGs) —é% P(s) > )
-C
L _1 <

CDS 101/110,3 Nov 08 Richard M. Murray, Caltech CDS




