
CDS 101/110a: Lecture 6-1
 Transfer Functions

Richard M. Murray
3 November 2008

Goals:
 Motivate and define the input/output transfer function of a linear system
 Understand the relationships among frequency response (Bode plot), 

transfer function, and state-space model
 Introduce block diagram algebra for transfer functions of interconnected 

systems

Reading: 
 Åström and Murray, Feedback Systems, Ch 8 
 Advanced: Lewis, Chapters 3-4
 CDS 210: DFT, Chapter 2
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Frequency Domain Modeling
Defn.  The frequency response of a linear system is the relationship between the gain and 
phase of a sinusoidal input and the corresponding steady state (sinusoidal) output.

Bode plot (1940; Henrik Bode)
 Plot gain and phase vs input frequency
 Gain is plotting using log-log plot
 Phase is plotting with log-linear plot
 Can read off the system response to a 

sinusoid – in the lab or in simulations
 Linearity ⇒ can construct response to 

any input (via Fourier decomposition)
 Key idea: do all computations in terms of 

gain and phase (frequency domain)
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Transmission of Exponential Signals
Exponential signal: 
• Construct constant inputs + sines/cosines by linear combinations

- Constant:
- Sinusoid: 

• Exponential response can be computed via 
the convolution equation
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est = e(σ+iω)t = eσteiωt = eσt(cos ωt + i sinωt)

u(t) = c = ce0t

u(t) = A sin(ωt) =
A

2i
(eiωt − e−iωt)

y(t) = Cx(t) + Du(t)

= CeAt
(
x(0)− (sI −A)−1B

)
+

(
C(sI −A)−1B + D

)
est

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Besτ dτ

= eAtx(0) + eAt(sI −A)−1e(sI−A)τ
∣∣∣
t

τ=0
B

= eAtx(0) + eAt(sI −A)−1
(
e(sI−A)t − I

)
B

= eAt
(
x(0)− (sI −A)−1B

)
+ (sI −A)−1Best
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Transfer Function and Frequency Response
Exponential response of a linear state space system

Transfer function
• Steady state response is proportional to

exponential input => look at input/output ratio
•                                             is the transfer

function between input and output

Frequency response

4

y(t) = CeAt
(
x(0)− (sI −A)−1B

)
+

(
C(sI −A)−1B + D

)
est

Common transfer functions

G(s) = C(sI −A)−1B + D

transient steady state

u(t) = A sinωt =
A

2i
(eiωt − e−iωt)

yss(t) =
A

2i

(
G(iω)eiωt −G(−iω)e−iωt

)

= A · |G(iω)| sin(ωt + arg G(iω))
gain

gain

phase
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Example: Electrical Circuits

Circuit dynamics (Kirchoff’s laws):

• Algebraic manipulation can be used as long as we assume exponential signals and 
all of the components (blocks) are linear

• Transfer function between input and output hows gain-bandwidth tradeoff
• Homework: derive transfer function for a PI controller using an op amp

5

vout

v
= − ak

s + a
=: G(s)

v

v1 − v

R1
=

v − v2

R2
and v2 = G(s)v

v2

v1
=

R2G(s)
R1 + R2 + R1G(s)

=
R2ak

R1ak + (R1 + R2)(s + a)
.

Op amp dynamics:
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Transfer Function Properties
Thm.  The transfer function for a linear system Σ=(A,B,C,D) is given by

Thm.  The transfer function G(s) corresponding to Σ=(A,B,C,D) has the following 
properties:

• H(s) is a ratio of polynomials n(s)/d(s) where d(s) is the characteristic equation for 
the matrix A and n(s) has order less than or equal to d(s).

• The steady state frequency response of Σ has gain |G(jω)| and phase arg G(jω):

Remarks

• Formally, can show that G(s) is the Laplace transform of the impulse response of Σ

• “y=G(s)u” is formally Y(s)=G(s)U(s) where Y(s) and U(s) are the Laplace transforms 
of y(t) and u(t).  (Multiplication in the Laplace domain corresponds to convolution.)

G(s) = C(sI −A)−1B + D s ∈ C

u = A sin(ωt)
y = |G(iω)|A sin(ωt + arg G(iω)) + transients
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Series Interconnections

A: Transfer functions multiply 
• Gains multiply
• Phases add
• Generally: transfer functions well 

formulated for frequency domain 
interconnections

Q: what happens when we connect two systems together in series?
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Feedback Interconnection

State space derivation

Frequency response

Transfer function derivation

Frequency response

Σ Σ

−a −a

ẋ = u = r − ay = −ax + r

y = x
y =

u

s
=

r − ay

s

y =
r

s + a
= G(s)r

r = A sin(ωt)

y =
∣∣∣∣

1√
a2 + ω2

∣∣∣∣ sin
(
ωt− tan−1

(ω

a

))

y = |G(iω)| sin(ωt + ∠G(iω))
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Poles and Zeros

Poles of H(s) determine the stability of the (closed loop) system

• Denominator of transfer function = characteristic polynomial of state space 
system

• Provides easy method for computing stability of systems

• Right half plane (RHP) poles (Re > 0) correspond to unstable systems

Zeros of H(s) related to frequency ranges with limited transmission

• A pure imaginary zero at s=jωz blocks any output at that frequency (G(jωz) = 0)

• Zeros provide limits on performance, especially RHP zeros (more on this later)

• Roots of d(s) are called poles of H(s)

• Roots of n(s) are called zeros of H(s)
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Example: Coupled Masses

Poles (Hq1f  and Hq2f )

• -0.0200 ± 0.7743j

• -0.0200 ± 0.4468j

Zeros (Hq2f )

• -0.0200 ± 0.6321j

Interpretation
• Zeros in Hq2f  give low 

response at  ω ≈ 0.6321
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Control Analysis and Design Using Transfer Functions

Transfer functions provide a method for “block diagram algebra”
• Easy to compute transfer functions between various inputs and outputs

- Her(s) is the transfer function between the reference and the error

- Hed(s) is the transfer function between the disturbance and the error

Transfer functions provide a method for performance specification
• Since transfer functions provide frequency response directly, it is convenient 

to work in the “frequency domain”
- Her(s) should be small in the frequency range 0 to 10 Hz (good tracking)

Control System++

disturbance

ref r

-1

C(s) P(s)++

d

ye u

-1
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Block Diagram Algebra
Basic idea: treat transfer functions as multiplication, write down equations

Manipulate equations to compute desired signals

Algebra works because we are working in frequency domain

• Time domain (ODE) representations are not as easy to work with

• Formally, all of this works because of Laplace transforms (see book)

C(s) P(s)++

d

r ye u

Note: linearity 
gives super-

position of terms

-1
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Σ

Type Diagram Transfer function

Series

Parallel

Feedback

13

Block Diagram Algebra

Σ

• These are the basic manipulations needed; some others are possible

• Formally, could work all of this out using the original ODEs (⇒ nothing really new)
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MATLAB manipulation of transfer functions
Creating transfer functions
• [num, den] = ss2tf(A, B, C, D)
• sys = tf(num, den)
• num, den = [1 a b] → s2 + as + b

Interconnecting blocks
• sys= series(sys1, sys2), parallel, feedback

Computing poles and zeros
• pole(sys), zero(sys)
• pzmap(sys)

I/O response
• step(sys), bode(sys) Am

pl
itu

de
0 5 10 15 20 250

0.5

1

1.5
Real Axis

Im
ag

 A
xis

-1 -0.6 -0.2 0.2 0.6 1-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1  

» tf(sys)
Transfer function:

       1
---------------

s^2 + 0.2 s + 1



Richard M. Murray, Caltech CDSCDS 101/110, 3 Nov 08 15

Example: Engine Control of a GM Astro
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Summary: Frequency Response & Transfer Functions

Frequency (rad/sec)

Ph
as

e 
(d

eg
)

100 101
-200

-150

-100

-50

0
10-2

10-1

100

101

M
ag

ni
tu

d
e

yss = A·|G(iω)|×
sin(ωt + arg G(iω))

G(s) = C(sI −A)−1B + D

Gy2u1 = Gy2u2Gy1u1 =
n1n2

d1d2

Σ
F

-c

-k

q̈ q̇ q

C(s) P(s)++

d

ye u

-1


