CDS 101/110a: Lecture 6-1
Transfer Functions

Richard M. Murray
3 November 2008

Goals:
* Motivate and define the input/output transfer function of a linear system

» Understand the relationships among frequency response (Bode plot),
transfer function, and state-space model

* Introduce block diagram algebra for transfer functions of interconnected
systems

Reading:
« Astrém and Murray, Feedback Systems, Ch 8
» Advanced: Lewis, Chapters 3-4
* CDS 210: DFT, Chapter 2




Frequency Domain Modeling

Defn. The frequency response of a linear system is the relationship between the gain and
phase of a sinusoidal input and the corresponding steady state (sinusoidal) output.
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Frequency Response

Bode plot (1940; Henrik Bode)
* Plot gain and phase vs input frequency
» Gain is plotting using log-log plot
* Phase is plotting with log-linear plot

» Can read off the system response to a
sinusoid — in the lab or in simulations

* Linearity = can construct response to
any input (via Fourier decomposition)

» Key idea: do all computations in terms of

960 ' gain and phase (frequency domain)
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Transmission of Exponential Signals

Exponential signal: e%! = (77t = teiwt — 7 (coswi + i sin wt)
e Construct constant inputs + sines/cosines by linear combinations
- Constant: u(t) = ¢ = ce®

= Sinusoid: u(t) = Asin(wt) = %(em — e ) 1\¥

e Exponential response can be computed via ”
the convolution equation % 2
x(t) = etx(0) + /Ot eM=7) BesT dr :

t ~
B > 0 \/év —=

=0 -0.5 Phd

= eAtx(O) + eAt(sI — A)_l (e(SI_A)t — [)B o 5 10 15

_ eAtx(()) +€At(SI_A)_1€(SI_A)T

= At (xm) ~ (s — A)—lB) +(sI — A)"1Best

y(t) = Cx(t) + Du(t)
= CeAt (x(()) (s — A)—lB) n (0(31 _AB D) et
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Transfer Function and Frequency Response

Exponential response of a linear state space system

y(t) = Cet (az(O) — (sI — A)_lB> + (C(s[ —A)7'B+ D) et
transient steady state

Transfer function _
Common transfer functions

e Steady state response is proportional to 1
exponential input => look at input/output ratio y=u .
® G(s)=C(sI — A)"'B+ D is the transfer B
function between input and output y=u §
1
ytay=u
Frequency response S+a
A | . 1
u(t) = Asinwt = 2—@,(6“‘”j — e y=1u 2
Yss(t) = é (G(iw)em — G(—iw)e_m) 5+ 2Ewny+ w2y = u 1
2i Y ny T Ony = 52 + 28 wps + w?
= A |G(iw)| sin(wt + arg G(iw)) ’
gain phase y=kpu+kgi+kifu kp+kds+;’
y(t) = u(t — ) e T
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Example: Electrical Circuits
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Circuit dynamics (Kirchoff’s laws):

UlR_l A ;2;2 and vy = G(s)v
v2 R2G(s) Ryak

vi  Ri+ Ro+ RiG(s) Riak+ (Ri+ Ro)(s+a)

e Algebraic manipulation can be used as long as we assume exponential signals and
all of the components (blocks) are linear

e Transfer function between input and output hows gain-bandwidth tradeoff
e Homework: derive transfer function for a P| controller using an op amp
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Transfer Function Properties

Thm. The transfer function for a linear system 2=(A,B,C,D) is given by
G(s)=C(sI —A)'B+D seC

Thm. The transfer function G(s) corresponding to 2=(A,B,C,D) has the following

properties:

® H(s) is a ratio of polynomials n(s)/d(s) where d(s) is the characteristic equation for
the matrix A and n(s) has order less than or equal to d(s).

® The steady state frequency response of 2 has gain |G(jw)| and phase arg G(jw):

u = Asin(wt)
y = |G(iw)|Asin(wt 4+ arg G(iw)) + transients

Remarks
e Formally, can show that G(s) is the Laplace transform of the impulse response of 2
e “y=G(s)u” is formally Y(s)=G(s)U(s) where Y(s) and U(s) are the Laplace transforms
of y(t) and u(t). (Multiplication in the Laplace domain corresponds to convolution.)
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Series Interconnections

Q: what happens when we connect two systems together in series?

u s u . Y2
— > >
» =Cx, +Du, Y, =Cx, + D,u,
Y, = 8,8,Ax

u = Asin(wt) _/\ y = g, Asin(w? +¢,)

sin(w? +¢, +¢,)

» » —_—
_ 50 _ 50
g g
g -10p g -10p
& &
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11111 150
-206 200
10 10 10!
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A: Transfer functions multiply

e Gains multiply " o Gi(s) CIEAN Go(s) IELIR

® Phases add

e Generally: transfer functions well
formulated for frequency domain u, ys = Ga(s)G1(s)uy
interconnections —  Ga(s)Gi(s) ——
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Feedback Interconnection
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State space derivation
r=u=r—ay=—ar+r
y=a

Frequency response r = Asin(wt)

Yy = |; sin (wt — tan_l(u—)))
Va2 + w? a

Transfer function derivation

U r—ay

Frequency response

y = |G(iw)]| sin(wt + LG (iw))
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Poles and Zeros

% = Ax + Bu H(s) = 28

=Cx+D * Roots of n(s) are called zeros of H(s
Yo d(s) = det(sI - A) (€) ‘ (s)

» Roots of d(s) are called poles of H(s)

Poles of H(s) determine the stability of the (closed loop) system

e Denominator of transfer function = characteristic polynomial of state space
system

® Provides easy method for computing stability of systems
e Right half plane (RHP) poles (Re > 0) correspond to unstable systems

Zeros of H(s) related to frequency ranges with limited transmission
e A pure imaginary zero at s=jw, blocks any output at that frequency (G(jw,) = 0)

e Zeros provide limits on performance, especially RHP zeros (more on this later)
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Example: Coupled Masses

. 0.04
" ” T Aoy = s*+0.085° +0.80165° +0.0325 + 0.12
m
AV 0.25% +0.0085 + 0.08
k k k H, ,=— 3 2
s*+0.08s" +0.8016s +0.0325 +0.12
[z
b Frequency Response
Poles (H,,,and H, ) il
e -0.0200 + 0.7743; T 0
e -0.0200 £ 0.4468; 2
g 0l
Zeros (Hqu) -60
e -0.0200 £ 0.6321;
Interpretation g’ hal
e Zeros in H ,, give low £ |
response at w = 0.6321 860 -
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Control Analysis and Design Using Transfer Functions

disturbance
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Transfer functions provide a method for “block diagram algebra”

e Easy to compute transfer functions between various inputs and outputs
- H,(s) is the transfer function between the reference and the error

- H,,(s) is the transfer function between the disturbance and the error

Transfer functions provide a method for performance specification
e Since transfer functions provide frequency response directly, it is convenient

to work in the “frequency domain”

- H,(s) should be small in the frequency range 0 to 10 Hz (good tracking)
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Block Diagram Algebra

Basic idea: treat transfer functions as multiplication, write down equations

d
=P
r - C(s) -*éi P(s) > 4 (s)u
u=d+C(s)e
e=r—y
-1
Manipulate equations to compute desired signals
e=r—-y (1+ P(s)C(s))e=r—-P(s)d Note: linearity
=r—P(s)u ~  gives super-
1 P(s) %
e = r— position of terms
=r=P(s)(d +C(s)e) 1+ P(s)C(s) 1+ P(s)C(s)
Her Hed

Algebra works because we are working in frequency domain
e Time domain (ODE) representations are not as easy to work with

e Formally, all of this works because of Laplace transforms (see book)
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Block Diagram Algebra

Type Diagram Transfer function
u Y Y nn
1 1 2 M,
: — > > = =
Series I{ylu1 U Yoy Hyzul HJ’2U2 yiy d.d
2 12
o H
—_ Y3l Ity g
Parallel dd,
- H)’z”l
r U, Vi
_> ;
Feedback Y H — H)’l”l — nld2
eedpac nr
« \+H, H, , nn,+dd,
Yoy
Vs u,

® These are the basic manipulations needed; some others are possible

e Formally, could work all of this out using the original ODEs (= nothing really new)
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MATLAB manipulation of transfer functions

Creating transfer functions
® [num, den] = ss2tf(A, B, C, D)
® sys = tf(num, den)
e num,den=[1ab]—=s?2+as+5b

Interconnecting blocks

® sys= series(sys1, sys2), parallel, feedback

Computing poles and zeros
® pole(sys), zero(sys)
® pzmap(sys)

/0 response
® step(sys), bode(sys)
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Example: Engine Control of a GM Astro

1

r

J,s + B,
r
T (™M) > & >0
N Js(J,s* +Bs+K) z
1,
Kr

Hy, (s)=
BlTe( ) JeJlss+JeBlS2+(JeK+KJI)S+KB,
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Summary: Frequency Response & Transfer Functions

X =Ax+ Bu
u=Asin(wr) —> y=Cx+Du |—> Yss = A|G(iw)|x
x(0) =0 sin(wt + arg G(iw))
| | / \ C(sI — A)"*B+D
o n1n2
ig:: 1 y2u1 — Gy2u2Gy1u1 — dy ds
] Y
q 11 |4 J

F .
1 191
H@—P— > — > — >
Y m S \)
e u
L C(S) ——)é—-)
-C

v
<

P(s)

A

CDS 101/110, 3 Nov 08 Richard M. Murray, Caltech CDS




