CDS 101/110a: Lecture 2.1
Dynamic Behavior

Richard M. Murray
6 October 2008

Goals:
* Learn to use phase portraits to visualize behavior of dynamical systems
» Understand different types of stability for an equilibrium point
* Know the difference between local/global stability and related concepts

Reading:
« Astrém and Murray, Feedback Systems, Chapter 4 [90 minutes]
* Advanced: S. H. Strogatz, Nonlinear Dynamics and Chaos, Chapter 6




Dynamic Behavior (and Stability)

Actuate Sense
Gas Pedal Vehicle Speed
A
Compute |_
Control “Law”
Goal #1: Stability x=f(x,u) u=k(x)
® Check if closed loop response is stable T - control law
system input
Goal #2: Performance ]
® | ook at how the closed loop system j Response
behaves, in a dynamic context - depends on

choice of control
(all are stable)

Goal #3: Robustness (later)
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Phase Portraits (2D systems only)

Phase plane plots show 2D dynamics as vector fields & stream functions
® &= f(z,u(z)) = F(x)
® Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

phaseplot(‘dosc’,
din|_ % [-1 1 10], [-1 1 10], 0.1, ...
dt | x, X, — X, boxgrid([-1 1 10], [-1 1 101));
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Stability of Equilibrium Points

An equilibrium point is: 1

Stable if initial conditions that start & of | .
near the equilibrium point, stay near \// o 2 4 6 8 10
N

x1, x2

e Also called “stable in the sense |2(0) —x.]] <6 = ||lx(t) —ze|| < €

of Lyapunov” e
. ! 1 x1 — — —x2
Asymptotically stable if all nearby \ 08
initial conditions converge to the oo s N >
T . . -0.5 S
equilibrium point % o Q B
0 2 4 6 8 10
e Stable + converging 0.5\ time
| tli)n(;lo z(t) =x. V|z(0) -z <e
-1 -0.5 X01 0.5 1
100
Unstable if some initial conditions 1 — 50J -
diverge from the equilibrium point 05 2 o<
e May still be some initial S o oL
conditions that converge } ol et
-0.5
1 //,z:—\\
-1 -0.5 0 0.5 1
x1
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Equilibrium Points

Equilibrium points represent stationary conditions for the dynamics

The equilibria of the system x = F(x) are the points x, such that f{x,) = 0.
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Example #1: Double Inverted Pendulum

Two series coupled pendula
» States: pendulum angles (2), velocities (2
* Dynamics: F = ma (balance of forces)

* Dynamics are very nonlinear

Eq #I Eq #2

Eq #3 Eq #4
Stability of equilibria
e Eq #1 is stable
4

e Eq #3 is unstable

e Eq #2 and #4 are unstable, but
with some stable “modes”
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Stability of Linear Systems

Linear dynamical system with state = ¢ R"

dx

i Ax z(0) = xo,

Stability determined by the eigenvalues \(A4) = {s € C:det(s] — A) =0}
e Simplest case: diagonal A matrix (all eigenvalues are real)

A 0] Ti = NiT;
dx Az Ait
_ T;(t) =e™""x 0
= N E (1) = N (0)

|0 An | » System is asy stable if A; <0

e Block diagonal case (complex eigenvalues)

01wy 0 0] Toj—1(t) = €7 (2;(0) cosw;t + ;41(0) sinw;t)

p —w1 01 0 0 T, (t) = €79 (2;(0) sinw;t — x;11(0) cosw;t)
x . .
a [0 0 - : | Systemis asy stable if Re); = o; < 0
0 0 Om W
| 0 0 —Wm  Om |

e Theorem linear system is asymptotically stable if and only if ReX; <0 VA\; € A(A4)
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Local Stability of Nonlinear Systems

Asymptotic stability of the linearization implies local asymptotic stability of
equilibrium point

e Linearization around equilibrium point captures “tangent” dynamics

0 OF
= FD+ .,

e [f linearization is unstable, can conclude that nonlinear system is locally unstable

Z2=T — T,
(x — z¢) + higher order terms approx Py

e [f linearization is stable but not asymptotically stable, can’t conclude anything about
nonlinear system:

: 3 linearize . * linearization is stable (but not asy stable)
X ==X _— =0 :
» nonlinear system can be asy stable or unstable

Local approximation particularly appropriate for control systems design
e Control often used to ensure system stays near desired equilibrium point

e |[f dynamics are well-approximated by linearization near equilibrium point, can use this
to design the controller that keeps you there (!)
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Example: Stability Analysis of Inverted Pendulum
System dynamics I N\ N

dx . QL’2
dt  |sinxzy — yao |’

Upward equilibrium:
¢ )—1r1 <1 — sinx;~u1

d_$ . i) . 0 1 -
dt — |z1 — x| |1 —v
e Eigenvalues: —%7 + %\/4 + 2

Downward equilibrium:
® Linearize around x1=m+zi: sin(m+ z1) = —sinz; & —2;

A= —w dz % 0 1
p— S — — >
Zo = T9 dt —21 — Y 22 -1 —
e Eigenvalues: —%7 + %\ /—4 4 ~2

CDS 101/110,6 Oct 08 Richard M. Murray, Caltech CDS




Reasoning about Stability using Lyapunov Functions

Basic idea: capture the behavior of a system by tracking “energy” in system
e Find a single function that captures distance of system from equilibrium
e Try to reason about the long term behavior of

q(1)
all solutions 5
Example: spring mass system S E
e Can we show that all solutions return 24\/\/\_ " "
to rest w/out explicitly solving ODE? - k
e |dea: look at how energy evolves in time mé§ + cg + kq = 0
e Start by writing equations in state space form d_:l: B T2 1 =dq
e Compute energy and its derivative dt —%xl — T To = (
1 1 av : :
Viz) = 5]@33% + §mx§ = kri1d1 + mxods
c k
= kx 20 + mao(——z0 — —x1) = —C23
m m

e Energy is positive = x, must eventually go to zero
e If x, goes to zero, can show that x, must also approach zero (Krasovskii-Lasalle)
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Local versus Global Behavior

Stability is a local concept
e Equilibrium points define the local behavior of the dynamical system
® Single dynamical system can have stable and unstable equilibrium points

Region of attraction
e Set of initial conditions that converge to a given equilibrium point
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Example #2: Predator Prey (ODE version)

Continuous time (ODE) version of predator prey dynamics:

a2 _ (1 _ E) _eHL .y« Continuous time (ODE) model

dt k ctH * MATLAB: predprey.m (from web page)
dll___b aHL

— = —dL L > 0.
dt c+ H -

Equilibrium points (2) 100

® ~(20.5, 29.5): unstable
e (0, 0): unstable

stable

L

Lynxes

Limit cycle
e Population of each species
oscillates over time

e Limit cycle is stable (nearby
solutions converge to limit cycle)

e This is a global feature of the 0 120
dynamics (not local to an equilibr
point)

unstable

|
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Simpler Example of a |m|1' Cycle
X X, \ \ 1 / '// - e =T e
1 '
1 - - h N / -
[ A [\ ;" \ [ 05N ' T
h L f " " \ f ", 'l ln‘ N R
:—_ 0 "‘| |.l '||‘ |"‘ ll'] |.’ l'l u"] || | U '
\ ..l‘ \ \ ‘.' ||' ," ‘,l ‘|‘ N /) v N
-1 \/ v, v —0.51, . v N
L ; VN
- L /:_Jﬁg,,-;"" — t \ \
2 10 20 30 15 PR A
time (aac) 15 -1 -05 0 05 1 15
Dynamics: Stability of invariant set
d 1 2
Ty — 2y (1 — 22 — 22) V(z) = (1 —af —a3)
dt 4
dx; 2 2
o - w(l-er—). V(2) = (181 + z2i2)(1 — a2 — 22)

® Note that||z|| = 1 is an invariant set

2 2)\2
e From simulation, x(t+T) = x(t) —(27 +23) (1 — 2] — a3)
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Summary: Stability and Performance
\\\ Key topics for this lecture

W\ e Stability of equilibrium points

e Eigenvalues determine stability
for linear systems

e [ocal versus global behavior

100
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Lynxes
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