
CDS 101/110a: Lecture 2.1
Dynamic Behavior

Richard M. Murray
6 October 2008

Goals:
 Learn to use phase portraits to visualize behavior of dynamical systems
 Understand different types of stability for an equilibrium point
 Know the difference between local/global stability and related concepts

Reading: 
 Åström and Murray, Feedback Systems, Chapter 4 [90 minutes]
 Advanced: S. H. Strogatz, Nonlinear Dynamics and Chaos, Chapter 6
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Goal #1: Stability
• Check if closed loop response is stable

Goal #2: Performance
• Look at how the closed loop system 

behaves, in a dynamic context

Goal #3: Robustness (later)

system input
control law

Response 
depends on 

choice of control
(all are stable)

Sense
Vehicle Speed

Compute
Control “Law”

Actuate
Gas Pedal

Dynamic Behavior (and Stability)
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Phase Portraits (2D systems only)
Phase plane plots show 2D dynamics as vector fields & stream functions
•  
• Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

phaseplot(‘dosc’, ...
  [-1 1 10], [-1 1 10], 0.1, ...
  boxgrid([-1 1 10], [-1 1 10]));
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Stability of Equilibrium Points
An equilibrium point is:

Stable if initial conditions that start 
near the equilibrium point, stay near
• Also called “stable in the sense 

of Lyapunov”

Asymptotically stable if all nearby 
initial conditions converge to the 
equilibrium point
• Stable + converging

Unstable if some initial conditions 
diverge from the equilibrium point
• May still be some initial 

conditions that converge
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6

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ε
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Equilibrium points represent stationary conditions for the dynamics
 

The equilibria of the system x = F(x) are the points xe such that f(xe) = 0.

5

Equilibrium Points

⇒ xe =
[
±nπ

0

]
dx

dt
=

[
x2

sinx1 − γx2

]
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Example #1: Double Inverted Pendulum

Stability of equilibria
• Eq #1 is stable
• Eq #3 is unstable
• Eq #2 and #4 are unstable, but 

with some stable “modes”

Two series coupled pendula
 States: pendulum angles (2), velocities (2)
 Dynamics: F = ma (balance of forces)
 Dynamics are very nonlinear

Eq #1 Eq #2

Eq #3 Eq #4
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Linear dynamical system with state             :

Stability determined by the eigenvalues
• Simplest case: diagonal A matrix (all eigenvalues are real)

• Block diagonal case (complex eigenvalues)

• Theorem linear system is asymptotically stable if and only if 

Stability of Linear Systems

7

λ(A) = {s ∈ C : det(sI −A) = 0}

x ∈ Rn

dx

dt
= Ax x(0) = x0,

dx

dt
=





λ1 0
λ2

. . .
0 λn




x

ẋi = λixi

xi(t) = eλitx(0)

• System is asy stable if  λi < 0

dx

dt
=





σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm

0 0 −ωm σm




x

Re λi < 0 ∀λi ∈ λ(A)

• System is asy stable if  

x2j−1(t) = eσjt
(
xi(0) cos ωjt + xi+1(0) sinωjt

)

x2j(t) = eσjt
(
xi(0) sinωjt− xi+1(0) cos ωjt

)

Re λi = σi < 0
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Local Stability of Nonlinear Systems
Asymptotic stability of the linearization implies local asymptotic stability of 
equilibrium point 

• Linearization around equilibrium point captures “tangent” dynamics

• If linearization is unstable, can conclude that nonlinear system is locally unstable

• If linearization is stable but not asymptotically stable, can’t conclude anything about 
nonlinear system:

Local approximation particularly appropriate for control systems design

• Control often used to ensure system stays near desired equilibrium point

• If dynamics are well-approximated by linearization near equilibrium point, can use this 
to design the controller that keeps you there (!)

• linearization is stable (but not asy stable)
• nonlinear system can be asy stable or unstable

linearize

0
ẋ = F (xe) +

∂F

∂x

∣∣∣∣
xe

(x− xe) + higher order terms
approx

ż = Az

z = x− xe
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Example: Stability Analysis of Inverted Pendulum
System dynamics

Upward equilibrium: 
•  

• Eigenvalues: 

Downward equilibrium:
•  Linearize around x1 = π + z1:

• Eigenvalues: 

9

dx

dt
=

[
x2

sinx1 − γx2

]
,

dx

dt
=

[
x2

x1 − γx2

]
=

[
0 1
1 −γ

]
x

dz

dt
=

[
z2

−z1 − γ z2

]
=

[
0 1
−1 −γ

]
z

z1 = x1 − π

z2 = x2

θ = x1 ! 1 =⇒ sinx1 ≈ x1

=⇒

−1
2
γ ± 1

2

√
4 + γ2

−1
2
γ ± 1

2

√
−4 + γ2

sin(π + z1) = − sin z1 ≈ −z1
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Basic idea: capture the behavior of a system by tracking “energy” in system
• Find a single function that captures distance of system from equilibrium
• Try to reason about the long term behavior of 

all solutions

Example: spring mass system
• Can we show that all solutions return 

to rest w/out explicitly solving ODE?
• Idea: look at how energy evolves in time

• Start by writing equations in state space form
• Compute energy and its derivative

• Energy is positive ⇒ x2 must eventually go to zero

• If x2  goes to zero, can show that x1 must also approach zero (Krasovskii-Lasalle)

10

Reasoning about Stability using Lyapunov Functions

mq̈ + cq̇ + kq = 0

dx

dt
=

[
x2

− k
mx1 − c

mx2

]
x1 = q

x2 = q̇

V (x) =
1
2
kx2

1 +
1
2
mx2

2
dV

dt
= kx1ẋ1 + mx2ẋ2

= kx1x2 + mx2(−
c

m
x2 −

k

m
x1) = −cx2

2
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Local versus Global Behavior
Stability is a local concept
• Equilibrium points define the local behavior of the dynamical system
• Single dynamical system can have stable and unstable equilibrium points

Region of attraction
• Set of initial conditions that converge to a given equilibrium point
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Continuous time (ODE) version of predator prey dynamics:

Equilibrium points (2)
• ~(20.5, 29.5): unstable 
• (0, 0): unstable

Limit cycle
• Population of each species 

oscillates over time
• Limit cycle is stable (nearby

solutions converge to limit cycle)
• This is a global feature of the 

dynamics (not local to an equilibrium 
point)
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Example #2: Predator Prey (ODE version) 

 Continuous time (ODE) model
 MATLAB: predprey.m (from web page)

unstable

dH

dt
= rH

(
1− H

k

)
− aHL

c + H
H ≥ 0

dL

dt
= b

aHL

c + H
− dL L ≥ 0.

stable
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Dynamics:

• Note that              is an invariant set
• From simulation, x(t+T) = x(t)

Stability of invariant set

Simpler Example of a Limit Cycle
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dx1

dt
= −x2 − x1(1− x2

1 − x2
2)

dx2

dt
= x1 − x2(1− x2

1 − x2
2). V̇ (x) = (x1ẋ1 + x2ẋ2)(1− x2

1 − x2
2)

= · · ·

= −(x2
1 + x2

2)
(
1− x2

1 − x2
2

)2

V (x) =
1
4
(
1− x2

1 − x2
2

)2

‖x‖ = 1
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Summary: Stability and Performance
Key topics for this lecture

• Stability of equilibrium points

• Eigenvalues determine stability 
for linear systems

• Local versus global behavior
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