

CDS 101/110a: Lecture 2.1 Dynamic Behavior

Richard M. Murray 6 October 2008

Goals:

- Learn to use phase portraits to visualize behavior of dynamical systems
- Understand different types of stability for an equilibrium point
- Know the difference between local/global stability and related concepts

Reading:

- Åström and Murray, Feedback Systems, Chapter 4 [90 minutes]
- Advanced: S. H. Strogatz, Nonlinear Dynamics and Chaos, Chapter 6

Phase Portraits (2D systems only)

Phase plane plots show 2D dynamics as vector fields & stream functions

- $\dot{x} = f(x, u(x)) = F(x)$
- Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

CDS 101/110, 6 Oct 08

Richard M. Murray, Caltech CDS

Stability of Equilibrium Points

-0.5

0

x1

0.5

0.5

0

-0.5

0.5

-0.5

-1 -1

-0.5

0

x1

0.5

Ň

An equilibrium point is:

Stable if initial conditions that start near the equilibrium point, stay near

 Also called "stable in the sense of Lyapunov"

Asymptotically stable if all nearby initial conditions converge to the equilibrium point

• Stable + converging

Unstable if some initial conditions diverge from the equilibrium point

• May still be some initial conditions that converge

time

 $||x(0) - x_e|| < \delta \implies ||x(t) - x_e|| < \epsilon$

x1, x2

 $x_1 - - x_2$

10

$$\lim_{t \to \infty} x(t) = x_e \quad \forall \| x(0) - x_e \| < \epsilon$$

CDS 101/110, 6 Oct 08

Richard M. Murray, Caltech CDS

4

6

Equilibrium Points

Equilibrium points represent stationary conditions for the dynamics

The *equilibria* of the system $\dot{x} = F(x)$ are the points x_e such that $f(x_e) = 0$.

$$\frac{dx}{dt} = \begin{bmatrix} x_2 \\ \sin x_1 - \gamma x_2 \end{bmatrix} \implies x_e = \begin{bmatrix} \pm n\pi \\ 0 \end{bmatrix}$$

Example #1: Double Inverted Pendulum

Two series coupled pendula

- States: pendulum angles (2), velocities (2)
- Dynamics: *F* = *ma* (balance of forces)
- Dynamics are very nonlinear

Stability of equilibria

- Eq #1 is stable
- Eq #3 is unstable
- Eq #2 and #4 are unstable, but with some stable "modes"

Stability of Linear Systems

Linear dynamical system with state $x \in \mathbb{R}^n$

$$\frac{dx}{dt} = Ax \qquad x(0) = x_0,$$

Stability determined by the eigenvalues $\lambda(A) = \{s \in \mathbb{C} : \det(sI - A) = 0\}$

• Simplest case: diagonal A matrix (all eigenvalues are real)

Block diagonal case (complex eigenvalues)

$$\dot{x}_i = \lambda_i x_i$$

 $x_i(t) = e^{\lambda_i t} x(0)$
• System is asy stable if $\lambda_i < 0$
nvalues)

$$x_{2j-1}(t) = e^{\sigma_j t} \left(x_i(0) \cos \omega_j t + x_{i+1}(0) \sin \omega_j t \right)$$
$$x_{2j}(t) = e^{\sigma_j t} \left(x_i(0) \sin \omega_j t - x_{i+1}(0) \cos \omega_j t \right)$$

- **Theorem** linear system is asymptotically stable if and only if $\operatorname{Re} \lambda_i < 0 \quad \forall \lambda_i \in \lambda(A)$

Local Stability of Nonlinear Systems

Asymptotic stability of the linearization implies *local* asymptotic stability of equilibrium point

• Linearization around equilibrium point captures "tangent" dynamics

$$\dot{x} = F(\dot{x_e}) + \left. \frac{\partial F}{\partial x} \right|_{x_e} (x - x_e) + \text{higher order terms} \quad \xrightarrow{\text{approx}} \quad \begin{array}{c} z = x - x_e \\ \dot{z} = Az \end{array}$$

- If linearization is *unstable*, can conclude that nonlinear system is locally unstable
- If linearization is *stable* but not *asymptotically stable*, can't conclude anything about nonlinear system:

$$\dot{x} = \pm x^3$$
 $\stackrel{linearize}{\longrightarrow}$ $\dot{x} = 0$ $\stackrel{linearization is stable (but not asy stable)}{\cdot}$ nonlinear system can be asy stable or unstable

Local approximation particularly appropriate for control systems design

- Control often used to ensure system stays near desired equilibrium point
- If dynamics are well-approximated by linearization near equilibrium point, can use this to design the controller that keeps you there (!)

Example: Stability Analysis of Inverted Pendulum

System dynamics

$$\frac{dx}{dt} = \begin{bmatrix} x_2\\\sin x_1 - \gamma x_2 \end{bmatrix},$$

Upward equilibrium:

•
$$\theta = x_1 \ll 1 \implies \sin x_1 \approx x_1$$

$$\frac{dx}{dt} = \begin{bmatrix} x_2\\ x_1 - \gamma x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 1 & -\gamma \end{bmatrix} x$$

• Eigenvalues:
$$-\frac{1}{2}\gamma \pm \frac{1}{2}\sqrt{4+\gamma^2}$$

Downward equilibrium:

• Linearize around $x_1 = \pi + z_1$: $\sin(\pi + z_1) = -\sin z_1 \approx -z_1$

$$z_1 = x_1 - \pi \implies \frac{dz}{dt} = \begin{bmatrix} z_2 \\ -z_1 - \gamma & z_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -\gamma \end{bmatrix} z$$

we nervalues: $-\frac{1}{2}\gamma + \frac{1}{2}\sqrt{-4 + \gamma^2}$

• Eigenvalues:
$$-\frac{1}{2}\gamma \pm \frac{1}{2}\sqrt{-4+\gamma^2}$$

Reasoning about Stability using Lyapunov Functions

Basic idea: capture the behavior of a system by tracking "energy" in system

- Find a single function that captures distance of system from equilibrium
- Try to reason about the long term behavior of *all* solutions

Example: spring mass system

- Can we show that all solutions return to rest w/out explicitly solving ODE?
- Idea: look at how energy evolves in time
- Start by writing equations in state space form
- Compute energy and its derivative

$$V(x) = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 \qquad \frac{dV}{dt} = kx_1\dot{x}_1 + mx_2\dot{x}_2$$
$$= kx_1x_2 + mx_2(-\frac{c}{m}x_2 - \frac{k}{m}x_1) = -cx_2^2$$

- Energy is positive $\Rightarrow x_2$ must eventually go to zero
- If x_2 goes to zero, can show that x_1 must also approach zero (Krasovskii-Lasalle)

$$m\ddot{q} + c\dot{q} + kq = 0$$

$$\frac{dx}{dt} = \begin{bmatrix} x_2 \\ -\frac{k}{m}x_1 - \frac{c}{m}x_2 \end{bmatrix} \qquad \begin{array}{c} x_1 = q \\ x_2 = \dot{q} \end{array}$$

Local versus Global Behavior

Stability is a *local* concept

- Equilibrium points define the local behavior of the dynamical system
- Single dynamical system can have stable and unstable equilibrium points

Region of attraction

• Set of initial conditions that converge to a given equilibrium point

Example #2: Predator Prey (ODE version)

Continuous time (ODE) version of predator prey dynamics:

$$\begin{split} \frac{dH}{dt} &= rH\left(1-\frac{H}{k}\right) - \frac{aHL}{c+H} \quad H \geq 0\\ \frac{dL}{dt} &= b\frac{aHL}{c+H} - dL \qquad \qquad L \geq 0 \end{split}$$

Equilibrium points (2)

- ~(20.5, 29.5): unstable
- (0, 0): unstable

Limit cycle

- Population of each species oscillates over time
- Limit cycle is stable (nearby solutions converge to limit cycle)
- This is a *global* feature of the dynamics (not local to an equilibr point)

Continuous time (ODE) model

Richard M. Murray, Caltech CDS

Summary: Stability and Performance

Key topics for this lecture

- Stability of equilibrium points
- Eigenvalues determine stability for linear systems
- Local versus global behavior

