
CDS 101/110a: Lecture 10-1

 Robust Performance

Richard M. Murray

1 December 2008

Goals:

• Describe how to represent uncertainty in process dynamics

• Describe how to analyze a system in the presence of uncertainty

• Review the main principles and tools for the course

Reading: 

• Åström and Murray, Feedback Systems, Ch 12 

• Advanced: Lewis, Chapter 9

• CDS 210: DFT, Chapters 4-6
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Control = Sensing + Computation + Actuation

Sense
Vehicle Speed

Compute
Control Action

Actuate
Gas Pedal

Goals: Stability, Performance, Robustness

Stability: bounded inputs 
produce bounded outputs

• Need to check all input/output 
pairs (Gang of Four/Six)

• Necessary and sufficient 
condition: check for
nonzero solutions around 
feedback loop

Performance: desirable system 
response

• Step response: rise time, 
settling time, overshoot, etc

• Frequency response: tracking 
signals over given range

Robustness: stability/
performance in presence of 
uncertainties 

• Need to check stability for set of 
disturbances & system models

Nyquist Diagram
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Modeling Uncertainty

Noise and disturbances

• Model the amount of noise by its signal strength in different frequency bands

• Can model signal strength by peak amplitude, average energy, and other norms

• Typical example: Dryden gust models (filtered white noise)

Parametric uncertainty

• Unknown parameters or parameters that vary from plant to plant

• Typically specified as tolerances on the basic parameters that describe system

Unmodeled dynamics

• High frequency dynamics (modes, etc) can be excited by control loops

• Use bounded operators to account for effects of unmodeled modes:

!

Pµ(s)
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Unmodeled Dynamics

“Model” unknown dynamics through bounded transfer function

• Simplest case: additive uncertainty

• !(s) is unknown, but bounded in magnitude

• Magnitude bound can depend on frequency; 
typically have a good model at low frequency

Different types of uncertainty can be used 
depending on where uncertainty enters

• Multiplicative: good for unknown gain or
actuator dynamics

• Feedback: good for “leakage” effects (eg,
in electrical circuits)

4

P̃ (s) = P (s) + ∆(s), |∆(s)| < W2(s)

Additive: P + ∆ Feedback: P/(1 + ∆fb P )Multiplicative: P (1 + δ)
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Stability in the Presence of Uncertainty

Characterize stability in terms of stability margin sm

• Stability margin = distance on Nyquist plot to -1 point

• Stability margin = 1/Ms (Ms = maximum sensitivity)

• For robustness analysis, stability margin is more useful 
than classical gain and phase margins

Robust stability: verify no new net encirclements occur

• Assume that nominal system is stable

• New loop transfer function: 

• No net encirclements as long as 

• Can rewrite as bound on allowable perturbation

• If condition is satisfied, then sm will never cross to zero 
=> no new net encirclements

5

Ms = max |S(iω)| = max
∣∣∣∣

1
1 + L

∣∣∣∣ ,

sm = min |(−1)− L| = min |1 + L| = 1/Ms

L̃ = (P + ∆)C = L + C∆
|C∆| < |1 + L|

|δ| =
∣∣∣
∆
P

∣∣∣ <
1

|T |or|∆| <
∣∣∣
1 + PC

C

∣∣∣ =
∣∣∣
P

T

∣∣∣
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Example: Cruise Control

Question: how accurate does our model have to be

• Start with very simple model (25 m/s, 4th gear)

• Ignores details of engine dynamics, sensor delays, etc

• Model unknown dynamics as additive or multiplicative 
uncertainty (can convert bounds from one to the other)

• System will remain stable as long as

6

|δ| =
∣∣∣
∆
P

∣∣∣ <
1

|T ||∆| <
∣∣∣
1 + PC

C

∣∣∣ =
∣∣∣
P

T

∣∣∣

C(s) = 0.72 +
0.18
s

Remarks

• Conditions show why
we can use simple 
models for designs

• Models must be 
accurate near critical 
point (eg, crossover)

P (s) =
1.38

s + 0.0142
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Robust Performance Using Sensitivity Functions

Performance conditions

• What happens
to performance
in the presence of
uncertainty?

• Start by looking at the
sensitivity of transfer
functions to process
model

• Sensitivity functions actually come from this analysis

7

Gyd =
P

1 + PC
= PS

dGyd

dP
=

1
(1 + PC)2

=
SP

P (1 + PC)
= S

Gyd

P

Gyd + ∆yd ≈
P + ∆

1 + (P + ∆)C

≈ P

1 + PC
+

∆
1 + PC

= Gyd + S∆

dGyd

Gyd
= S

dP

P
.

dGun

Gun
= T

dP

P
.

dGyr

Gyr
= S

dP

P
.

!

Other measures
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Example: Operational Amplifier

Basic amplifier with unmodeled (high frequency) dynamics

• Start with low frequency model:

• Typical parameters b ! a ! 1

• Robust stability: see how much uncertainty we can handle

• Robust performance: effect on tracking, disturbance rej

8

Gv2v1 = −R2

R1

G(s)
G(s) + R2/R1 + 1

. G(s) =
b

s + a
, α =

R2

R1

S =
s + a

s + a + αb

|δ| =
∣∣∣
∆
P

∣∣∣ <
1

|T |
T =

αb

s + a + αb

dGyd

Gyd
= T

dP

P

dGyr

Gyr
! S

dP

P

Note: disturbance enters in different location

S T

1/T
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Alternative Formulation for Robust Performance

P

K

W1

! W2

d z  !

W2

W2

uncertainty block

performance weight

uncertainty weight

d

z

disturbance signal

output signal

Goal: guaranteed performance in presence of uncertainty

• Compare energy in disturbances to energy in outputs

• Use frequency weights to change performance/uncertainty descriptions

• “Can I get X level of performance even with Y level of uncertainty?”

‖z‖2 ≤ γ‖d‖2 for all ‖∆‖∞ ≤ 1
‖H‖∞ = max

ω
|H(iω)|

‖u‖2 =

√∫ ∞

0
|u(t)|2 dt
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Design for Robust Performance (ala DFT)

Basic idea: interpret conditions on Nyquist

• Performance: keep sensitivity function small

• W1 serves as performance weighting function

• Stability: avoid additional encirclements

• W2 serves as uncertainty weighting function

• Individual conditions provide robust stability 
and (nominal) performance

|W1S| < 1 =⇒ |W1| < |1 + L|

|W2δ| <
1

|T | =⇒ |W2L| < |1 + L|, |δ| < 1

Design loop shape to satisfy robust stability and performance conditions

• Nominal performance:

• Robust stability: 

• Missing: robust performance...

Theorem: robust performance if circles 
don’t intersect on Nyquest plot: 

• Holds for multiplicative uncertainty + 
weighted sensitivity (cf DFT)

|W1| < |1 + L| for all ω

|W2L| < |1 + L| for all !

|W1| + |W2L| < |1 + L| for all ω
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Tools for Analyzing and Synthesizing Controllers

Robust Multi-Variable Control Theory

• Generalizes gain/phase margin to MIMO systems

• Uses operator theory to handle uncertainty, performance

• Uses state space theory to performance computations (LMIs)

Analysis Tools

• H" gains for multi-input, multi-output systems

• µ analysis software

- Allow structured uncertainty descriptions (fairly general)

- Computes upper and lower bounds on performance

- Wide usage in aerospace industry

• SOSTOOLS: Nonlinear extensions

Synthesis Tools

• LQR/LQG + H" “loop shaping”;  modern tools for control engineers

• µ synthesis software; tends to generate high order controllers

• Model reduction software for reducing order of plants, controllers

!

P

K
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Bode Diagram
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Example: Robust Cruise Control

Theorem

! Performance:

! Robust Stability: 
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Course Summary: Two Main Principles of Control

Design of Dynamics through Feedback

• Feedback allows the dynamics of a system to be modified

• Key idea: interconnection gives closed loop that modifies natural behavior

• Tools: eigenvalue assignment, loop shaping

Robustness to Uncertainty through Feedback

• Feedback allows high performance in the presence of uncertainty

• Key idea: accurate sensing to compare actual to desired, correction through 
computation and actuation

• Tools: stability margins, sensitivity functions

!


