

CDS 101/110a: Lecture 10-1 Robust Performance

Richard M. Murray

1 December 2008

Goals:

- Describe how to represent uncertainty in process dynamics
- Describe how to analyze a system in the presence of uncertainty
- Review the main principles and tools for the course

Reading:

- Åström and Murray, Feedback Systems, Ch 12
- Advanced: Lewis, Chapter 9
- CDS 210: DFT, Chapters 4-6

Control = Sensing + Computation + Actuation

Stability: bounded inputs produce bounded outputs

- Need to check all input/output pairs (Gang of Four/Six)
- Necessary and sufficient condition: check for nonzero solutions around feedback loop

Performance: desirable system response

- Step response: rise time, settling time, overshoot, etc
- Frequency response: tracking signals over given range

Robustness: stability/ performance in presence of uncertainties

• Need to check stability for *set* of disturbances & system models

CDS 101/110, 3 Nov 08

Richard M. Murray, Caltech CDS

10

Modeling Uncertainty

Noise and disturbances

- Model the amount of noise by its signal strength in different frequency bands
- Can model signal strength by peak amplitude, average energy, and other norms
- Typical example: Dryden gust models (filtered white noise)

Parametric uncertainty

- Unknown parameters or parameters that vary from plant to plant
- Typically specified as tolerances on the basic parameters that describe system

Unmodeled dynamics

- High frequency dynamics (modes, etc) can be excited by control loops
- Use bounded operators to account for effects of unmodeled modes:

Unmodeled Dynamics

"Model" unknown dynamics through bounded transfer function

• Simplest case: additive uncertainty

 $\tilde{P}(s) = P(s) + \Delta(s), \qquad |\Delta(s)| < W_2(s)$

- $\Delta(s)$ is unknown, but bounded in magnitude
- Magnitude bound can depend on frequency; typically have a good model at low frequency

Different types of uncertainty can be used depending on where uncertainty enters

- Multiplicative: good for unknown gain or actuator dynamics
- Feedback: good for "leakage" effects (eg, in electrical circuits)

Р

 $\Delta_{\rm fb}$

Additive: $P + \Delta$

Richard M. Murray, Caltech CDS

Multiplicative: $P(1 + \delta)$ Feedback: $P/(1 + \Delta_{\rm fb} P)$

CDS 101/110, 3 Nov 08

Stability in the Presence of Uncertainty

Characterize stability in terms of stability margin s_m

- Stability margin = distance on Nyquist plot to -1 point
- Stability margin = $1/M_s$ (M_s = maximum sensitivity)

$$M_s = \max |S(i\omega)| = \max \left|\frac{1}{1+L}\right|,$$

 $s_m = \min |(-1) - L| = \min |1 + L| = 1/M_s$

• For robustness analysis, stability margin is more useful than classical gain and phase margins

Robust stability: verify no new net encirclements occur

- Assume that nominal system is stable
- New loop transfer function: $\tilde{L} = (P + \Delta)C = L + C\Delta$
- No net encirclements as long as $|C\Delta| < |1+L|$
- Can rewrite as bound on allowable perturbation

$$|\Delta| < \left|\frac{1+PC}{C}\right| = \left|\frac{P}{T}\right| \quad \text{or} \quad |\delta| = \left|\frac{\Delta}{P}\right| < \frac{1}{|T|}$$

If condition is satisfied, then sm will never cross to zero
=> no new net encirclements

Example: Cruise Control

Question: how accurate does our model have to be

• Start with very simple model (25 m/s, 4th gear)

$$P(s) = \frac{1.38}{s + 0.0142} \qquad C(s) = 0.72 + \frac{0.18}{s}$$

- Ignores details of engine dynamics, sensor delays, etc
- Model unknown dynamics as additive or multiplicative uncertainty (can convert bounds from one to the other)
- System will remain stable as long as

Remarks

 $\operatorname{Re} L(i\omega)$

- Conditions show why we can use simple models for designs
- Models must be accurate near critical point (eg, crossover)

CDS 101/110, 3 Nov 08

Richard M. Murray, Caltech CDS

Robust Performance Using Sensitivity Functions

Performance conditions

- What happens to performance in the presence of uncertainty?
- Start by looking at the sensitivity of transfer functions to process model

$$G_{yd} = \frac{P}{1 + PC} = PS$$
$$\frac{dG_{yd}}{dP} = \frac{1}{(1 + PC)^2} = \frac{SP}{P(1 + PC)} = S\frac{G_{yd}}{P}$$
$$G_{yd} + \Delta_{yd} \approx \frac{P + \Delta}{1 + (P + \Delta)C}$$

$$\approx \frac{P}{1+PC} + \frac{\Delta}{1+PC} = G_{yd} + S\Delta$$

Other measures

$$\frac{dG_{yr}}{G_{yr}} = S\frac{dP}{P}.$$

$$\frac{dG_{yd}}{G_{yd}} = S\frac{dP}{P}.$$

$$\frac{dG_{un}}{G_{un}} = T\frac{dP}{P}.$$

• Sensitivity functions actually come from this analysis

CDS 101/110, 3 Nov 08

Richard M. Murray, Caltech CDS

Example: Operational Amplifier

Note: disturbance enters in different location

Basic amplifier with unmodeled (high frequency) dynamics

• Start with low frequency model:

$$G_{v_2v_1} = -\frac{R_2}{R_1} \frac{G(s)}{G(s) + R_2/R_1 + 1}. \qquad G(s) = \frac{b}{s+a}, \qquad \alpha = \frac{R_2}{R_1}$$

- Typical parameters b >> a >> 1
- Robust stability: see how much uncertainty we can handle

$$|\delta| = \left|\frac{\Delta}{P}\right| < \frac{1}{|T|} \qquad T = \frac{\alpha b}{s + a + \alpha b}$$

• Robust performance: effect on tracking, disturbance rej

$$\frac{dG_{yr}}{G_{yr}} \quad S\frac{dP}{P} \qquad \frac{dG_{yd}}{G_{yd}} = T\frac{dP}{P} \qquad S$$

s + a

Alternative Formulation for Robust Performance

- *d* disturbance signal
- *z* output signal
- Δ uncertainty block
- *W*₂ performance weight
- *W*₂ uncertainty weight

Goal: guaranteed performance in presence of uncertainty

$$||z||_{2} \leq \gamma ||d||_{2} \quad \text{for all} \quad ||\Delta||_{\infty} \leq 1 \qquad \qquad ||u||_{2} = \sqrt{\int_{0}^{\infty} |u(t)|^{2} dt} \\ ||H||_{\infty} = \max_{\omega} |H(i\omega)|$$

- Compare energy in disturbances to energy in outputs
- Use frequency weights to change performance/uncertainty descriptions
- "Can I get X level of performance even with Y level of uncertainty?"

Design for Robust Performance (ala DFT)

Basic idea: interpret conditions on Nyquist

- Performance: keep sensitivity function small $|W_1S| < 1 \implies |W_1| < |1+L|$
- *W*₁ serves as performance weighting function
- Stability: avoid additional encirclements

 $|W_2\delta| < \frac{1}{|T|} \implies |W_2L| < |1+L|, |\delta| < 1$

- *W*₂ serves as uncertainty weighting function
- Individual conditions provide robust stability and (nominal) performance

Design loop shape to satisfy robust stability and performance conditions

• Nominal performance:

$$|W_1| < |1+L|$$
 for all ω

• Robust stability:

 $|W_2L| < |1+L| \quad \text{for all}$

• Missing: robust performance...

Theorem: *robust* performance if circles don't intersect on Nyquest plot:

 $|W_1|+|W_2L|<|1+L|\quad\text{for all}\quad\omega$

 Holds for multiplicative uncertainty + weighted sensitivity (cf DFT)

Tools for Analyzing and Synthesizing Controllers

Robust Multi-Variable Control Theory

- Generalizes gain/phase margin to MIMO systems
- Uses operator theory to handle uncertainty, performance
- Uses state space theory to performance computations (LMIs)

Analysis Tools

- H∞ gains for multi-input, multi-output systems
- µ analysis software
 - Allow structured uncertainty descriptions (fairly general)
 - Computes upper and lower bounds on performance
 - Wide usage in aerospace industry
- SOSTOOLS: Nonlinear extensions

Synthesis Tools

- LQR/LQG + H∞ "loop shaping"; modern tools for control engineers
- $\bullet~\mu$ synthesis software; tends to generate high order controllers
- Model reduction software for reducing order of plants, controllers

Example: Robust Cruise Control

20

-20

_//(

-60 10¹ W_2

Magnitude (dB)

Bode Diagram

Frequency (rad/sec)

10

 W_1

1Ó

16

$$P(s) = \frac{1/m}{s+b/m} \cdot \frac{r}{s+a} \left(1 + W_2 \Delta\right)$$

Course Summary: Two Main Principles of Control

Design of Dynamics through Feedback

- Feedback allows the dynamics of a system to be modified
- Key idea: interconnection gives closed loop that modifies natural behavior
- Tools: eigenvalue assignment, loop shaping

Robustness to Uncertainty through Feedback

- Feedback allows high performance in the presence of uncertainty
- Key idea: accurate sensing to compare actual to desired, correction through computation and actuation
- Tools: stability margins, sensitivity functions

