

CDS 101/110a: Lecture 1.2 System Modeling

Richard M. Murray 1 October 2008

Goals:

- Define a "model" and its use in answering questions about a system
- Introduce the concepts of state, dynamics, inputs and outputs
- Review modeling using ordinary differential equations (ODEs)

Reading:

- Åström and Murray, Feedback Systems, Sections 2.1–2.3, 3.1 [40 min]
- Advanced: Lewis, A Mathematical Approach to Classical Control, Chapter 1

Model-Based Analysis of Feedback Systems

Analysis and design based on models

- A model provides a prediction of how the system will behave
- Feedback can give counter-intuitive behavior; models help sort out what is going on
- For control design, models don't have to be exact: feedback provides robustness

Control-oriented models: inputs and outputs

The model you use depends on the questions you want to answer

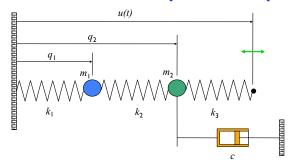
- A single system may have many models
- Time and spatial scale must be chosen to suit the questions you want to answer
- Formulate questions before building a model

Weather Forecasting

- Question 1: how much will it rain tomorrow?
- Question 2: will it rain in the next 5-10 days?
- Question 3: will we have a drought next summer?

Different questions ⇒ different models

Example #1: Spring Mass System



Applications

- Flexible structures (many apps)
- Suspension systems (eg, "Bob")
- Molecular and quantum dynamics

Questions we want to answer

- How much do masses move as a function of the forcing frequency?
- What happens if I change the values of the masses?
- Will Bob fly into the air if I take that speed bump at 25 mph?

Modeling assumptions

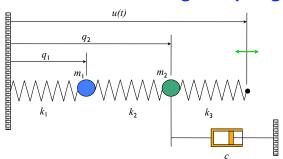
- Mass, spring, and damper constants are fixed and known
- Springs satisfy Hooke's law
- Damper is (linear) viscous force, proportional to velocity

CDS 101/110, 1 Oct 08

Richard M. Murray, Caltech CDS

3

Modeling a Spring Mass System



Model: rigid body physics (Ph 1)

- Sum of forces = mass * acceleration
- Hooke's law: $F = k(x x_{rest})$
- Viscous friction: F = c v

$$m_1 \ddot{q}_1 = k_2 (q_2 - q_1) - k_1 q_1$$

$$m_2 \ddot{q}_2 = k_3 (u - q_2) - k_2 (q_2 - q_1) - c \dot{q}_2$$

Converting models to state space form

- Construct a *vector* of the variables that are required to specify the evolution of the system
- Write dynamics as a *system* of first order differential equations:

$$\frac{dx}{dt} = f(x, u) \qquad x \in \mathbb{R}^n, \ u \in \mathbb{R}^p$$
$$y = h(x) \qquad y \in \mathbb{R}^q$$

$$\begin{bmatrix} \frac{d}{dt} \begin{bmatrix} q_1 \\ q_2 \\ \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \begin{bmatrix} \frac{\dot{q}_1}{\dot{q}_2} \\ \frac{k_2}{m} (q_2 - q_1) - \frac{k_1}{m} q_1 \\ \frac{k_3}{m} (u - q_2) - \frac{k_2}{m} (q_2 - q_1) - \frac{c}{m} \dot{q} \end{bmatrix}$$

$$y = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$
 "State space form"

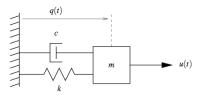
CDS 101/110, 1 Oct 08

Review: Second Order Differential Equations

$$m\ddot{q} + c\dot{q} + kq = u$$

Particular response: zero initial conditions

- $q(0) = 0, \dot{q}(0) = 0$
- Response to constant (step) input, u(t) = F



$$q(t) = \frac{F}{m\omega_0^2} \left(1 - e^{-\zeta\omega_0 t} \cos \omega_d t + \frac{\zeta}{\sqrt{1-\zeta^2}} e^{-\zeta\omega_0 t} \sin \omega_d t \right)$$

• Response to sinusoidal input, $u(t) = A \sin \omega t$

$$q(t) = MA\sin(\omega t + \theta) - MA\sin\theta, \qquad Me^{i\theta} = \frac{\omega_0^2}{\omega_0^2 - \omega^2 + 2i\zeta\omega_0\omega}$$

- Form of the solution: sinusoid at same frequency, with shift in mag & phase
- Solving by hand is a mess; we will learn much better ways later

Complete solution: homogeneous + particular

Warning: be careful to make sure the initial conditions are satisfied

CDS 101/110. 1 Oct 08

Richard M. Murray, Caltech CDS

5

More General Forms of Differential Equations

State space form

$$\frac{dx}{dt} = f(x, u)$$

$$y = h(x, u)$$

General form

$$y = Cx + Du$$

$$\frac{dx}{dt} = f(x, u) \qquad \frac{dx}{dt} = Ax + Bu \qquad x \in \mathbb{R}^n, u \in \mathbb{R}^p$$
$$y = h(x, u) \qquad y = Cx + Du \qquad y \in \mathbb{R}^q$$

Linear system • x = state; nth order

• u = input; will usually set p = 1

Higher order, linear ODE

$$\frac{d^{n}q}{dt^{n}} + a_{1}\frac{d^{n-1}q}{dt^{n-1}} + \dots + a_{n}q = u$$
$$y = b_{1}\frac{d^{n-1}q}{dt^{n-1}} + \dots + b_{n-1}\dot{q} + b_{n}q$$

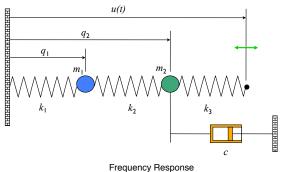
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} d^{n-1}q/dt^{n-1} \\ d^{n-2}q/dt^{n-2} \\ \vdots \\ dq/dt \\ q \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} d^{n-1}q/dt^{n-1} \\ d^{n-2}q/dt^{n-2} \\ \vdots \\ dq/dt \\ q \end{bmatrix} \quad \begin{bmatrix} d \\ dt \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} -a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & & \ddots & & \vdots \\ 0 & 0 & & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u$$

CDS 101/110, 1 Oct 08

Richard M. Murray, Caltech CDS

Simulation of a Mass Spring System



Steady state frequency response

- Force the system with a sinusoid
- Plot the "steady state" response, after transients have died out
- Plot relative magnitude and phase of output versus input (more later)

Matlab simulation (see handout)

```
function dydt = f(t, y, ...)
u = 0.00315*cos(omega*t);
dydt = [
    y(3);
    y(4);
    -(k1+k2)/m1*y(1) + k2/m1*y(2);
    k2/m2*y(1) - (k2+k3)/m2*y(2)
        - c/m2*y(4) + k3/m2*u ];

[t,y] = ode45(dydt,tspan,y0,[], k1,k2, k3, m1, m2, c, omega);
```

Modeling Terminology

State captures effects of the past

 independent physical quantities that determines future evolution (absent external excitation)

Inputs describe external excitation

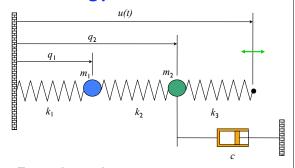
 Inputs are extrinsic to the system dynamics (externally specified)

Dynamics describes state evolution

- update rule for system state
- function of current state and any external inputs

Outputs describe measured quantities

- Outputs are function of state and inputs ⇒ not independent variables
- Outputs are often subset of state



Example: spring mass system

- State: position and velocities of each mass: $q_1,q_2,\dot{q}_1,\dot{q}_2$
- Input: position of spring at right end of chain: u(t)
- Dynamics: basic mechanics
- Output: measured positions of the masses: q₁, q₂

7

Modeling Properties

Choice of state is not unique

- There may be many choices of variables that can act as the state
- Trivial example: different choices of units (scaling factor)
- Less trivial example: sums and differences of the mass positions

Choice of inputs and outputs depends on point of view

- Inputs: what factors are external to the model that you are building
 - Inputs in one model might be outputs of another model (eg, the output of a cruise controller provides the input to the vehicle model)
- Outputs: what physical variables (often states) can you measure
 - Choice of outputs depends on what you can sense and what parts of the component model interact with other component models

Can also have different types of models

- Ordinary differential equations for rigid body mechanics
- Finite state machines for manufacturing, Internet, information flow
- Partial differential equations for fluid flow, solid mechanics, etc

CDS 101/110. 1 Oct 08

Richard M. Murray, Caltech CDS

9

Difference Equations

Difference equations model discrete transitions between continuous variables

- "Discrete time" description (clocked transitions)
- New state is function of current state + inputs
- State is represented as a continuous variable

$$x[k+1] = f(x[k], u[k])$$
$$y[k] = h(x[k])$$

Example: predator prev dynamics

1845 1855 1865 1875 1885 1895 1905 1915 1925 1935

Questions we want to answer

- Given the current population of hares and lynxes, what will it be next year?
- If we hunt down lots of lynx in a given year, how will the populations be affected?
- How do long term changes in the amount of food available affect the populations?

Modeling assumptions

- Track population annual (discrete time)
- The predator species is totally dependent on the prey species as its only food supply
- The prey species has an external food supply and no threat to its growth other than the specific predator.

Example #2: Predator Prey Modeling

Discrete Lotka-Volterra model

- State
 - H[k] # of rabbits in period k
 - L[k] # of foxes in period k
- Inputs (optional)
 - -u[k] amount of rabbit food
- Outputs: # of rabbits and foxes
- Dynamics: Lotka-Volterra eqs

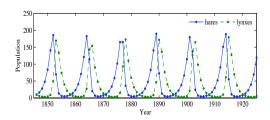
$$H[k+1] = H[k] + b_r(u)H[k] - aL[k]H[k],$$

$$L[k+1] = L[k] + cL[k]H[k] - d_fL[k],$$

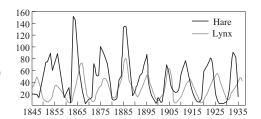
- Parameters/functions
 - $b_r(u)$ hare birth rate (per period); depends on food supply
 - d_f lynx mortality rate (per period)
 - *a*, *c* interaction terms

MATLAB simulation (see handout)

• Discrete time model, "simulated" through repeated addition



Comparison with data



CDS 101/110, 1 Oct 08

Richard M. Murray, Caltech CDS

11

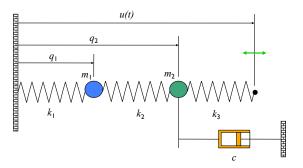
Summary: System Modeling

Model = state, inputs, outputs, dynamics

$$\frac{dx}{dt} = f(x, u)$$
$$y = h(x)$$

$$x[k+1] = f(x[k], u[k])$$
$$y[k] = h(x[k])$$

Principle: Choice of model depends on the questions you want to answer



```
function dydt = f(t,y, k1, k2,
k3, m1, m2, c, omega)
u = 0.00315*cos(omega*t);
dydt = [
  y(3);
  y(4);
  -(k1+k2)/m1*y(1) +
    k2/m1*y(2);
k2/m2*y(1) - (k2+k3)/m2*y(2)
  - b/m2*y(4) + k3/m2*u ];
```

CDS 101/110, 1 Oct 08 Richard M. Murray, Caltech CDS

```
L1 2 modeling.lst
 Sep 28, 08 13:45
                                                                       Page 1/2
% L1 2 modeling.m - Lecture 1.2 MATLAB calculations
% RMM, 6 Oct 03
% Spring mass system
% Spring mass system parameters
m = 250; m1=m; m2=m;
                                        % masses (all equal)
k = 50; k1=k; k2=k; k3=k;
                                        % spring constants
b = 10;
                                        % damping
A = 0.00315; omega = 0.75;
                                        % forcing function
% Call ode45 routine (MATLAB 6 format; help ode45 for details)
tspan=[0 500];
                                        % time range for simulation
y0 = [0; 0; 0; 0];
                                        % initial conditions
[t,y] = ode45(@springmass, tspan, y0, [], k1, k2, k3, m1, m2, b, A, omega);
% Plot the input and outputs over entire period
figure(1); clf
plot(t, A*cos(omega*t), t, y(:,1), t, y(:,2));
% Now plot the data for the final 10% (assuming this is long enough...)
endlen = round(length(t)/10);
                                       % last 10% of data record
range = [length(t)-endlen:length(t)]'; % create vector of indices (note ')
tend = t(range);
figure(2); clf
plot(tend, A*cos(omega*tend), tend, y(range,1), tend, y(range,2));
% Compute the relative phase and amplitude of the signals
% We make use of the fact that we have a sinusoid in steady state,
% as well as its derivative. This allows us to compute the magnitude
% of the sinusoid using simple trigonometry (\sin^2 + \cos^2 = 1).
u = A*cos(omega*tend); udot = -A*omega*sin(omega*tend);
ampu = mean( sqrt((u \cdot * u) + (udot/omega \cdot * udot/omega)));
fprintf(1, 'Amplitude = %0.5e cm', ampu*100);
% Predator prey system
% Set up the initial state
clear H L vear
H(1) = 10: L(1) = 10:
% For simplicity, keep track of the year as well
vear(1) = 1845:
% Set up parameters (note that c = a in the model below)
br = 0.6; df = 0.7; a = 0.014;
nperiods = 365;
                                        % simulate each day
duration = 90:
                                        % number of years for simulation
% Iterate the model
for k = 1:duration*nperiods
 b = br:
                                                % constant food supply
b = br*(1+0.5*sin(2*pi*k/(4*nperiods)));
                                                % varying food supply (try it!)
 H(k+1) = H(k) + (b*H(k) - a*L(k)*H(k))/nperiods;
 L(k+1) = L(k) + (a*L(k)*H(k) - df*L(k))/nperiods;
 year(k+1) = year(k) + 1/nperiods;
 if (mod(k, nperiods) == 1)
   % Store the annual population
   Ha((k-1)/nperiods + 1) = H(k);
   La((k-1)/nperiods + 1) = L(k);
 end:
```

```
L1 2 modeling.lst
 Sep 28, 08 13:45
                                                                           Page 2/2
end;
% Store the final population
Ha(duration) = H(duration*nperiods+1);
La(duration) = L(duration*nperiods+1);
% Plot the populations of rabbits and foxes versus time
plot(1845 + [1:duration], Ha, '.-', 1845 + [1:duration], La, '.--');
% Adjust the parameters of the plot
axis([1845 1925 0 250]);
xlabel('Year');
ylabel('Population');
% Now reset the parameters to look like we want
lgh = legend(gca, 'hares', 'lynxes', 'Location', 'NorthEast', ...
'Orientation', 'Horizontal');
legend(lgh, 'boxoff');
% springmass.m - ODE45 function for a spring mass system
% RMM, 6 Oct 03
% This file contains the differential equation that describes
% the mass spring system used as an example in CDS 101. It
% allows individual mass and spring values, plus sinusoidal
% The state is stored in the vector y. The values for y are
     y(1) = q1, position of first mass
    y(2) = q2, position of second mass
    y(3) = q1dot, velocity of first mass y(4) = q2dot, velocity of second mass
function dydt = springmass(t, y, k1, k2, k3, m1, m2, b, A, omega)
% compute the input to drive the system
u = A*cos(omega*t);
% compute the time derivative of the state vector
dvdt = [
 y(3);
 y(4);
  -(k1+k2)/m1*y(1) + k2/m1*y(2);
  k2/m2*y(1) - (k2+k3)/m2*y(2) - b/m2*y(4) + k3/m2*u
1;
```