CDS 101/110a: Lecture 1.2
System Modeling

Richard M. Murray
1 October 2008

Goals:
* Define a “model” and its use in answering questions about a system
* Introduce the concepts of state, dynamics, inputs and outputs
* Review modeling using ordinary differential equations (ODEs)

Reading:
* Astrém and Murray, Feedback Systems, Sections 2.1-2.3, 3.1 [40 min]

e Advanced: Lewis, A Mathematical Approach to Classical Control,
Chapter 1




Model-Based Analysis of Feedback Systems

Analysis and design based on models

e A model provides a prediction of how the system
will behave

e Feedback can give counter-intuitive behavior;
models help sort out what is going on

e For control design, models don’t have to be
exact: feedback provides robustness

Control-oriented models: inputs and outputs

The model you use depends on the questions
you want to answer

e A single system may have many models

e Time and spatial scale must be chosen to suit
the questions you want to answer

e Formulate questions before building a model
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Weather Forecasting

e Question 1: how much will it rain
tomorrow?

* Question 2: will it rain in the next
5-10 days?

* Question 3: will we have a
drought next summer?

Different questions =
different models




Example #1: Spring Mass System

B ut) Applications

% e Flexible structures (many apps)

q | ® Suspension systems (eg, “Bob”)
mu| (e ® Molecular and quantum dynamics

Questions we want to answer
E ® How much do masses move as a

function of the forcing frequency?

e \What happens if | change the values
of the masses?

e Will Bob fly into the air if | take that
speed bump at 25 mph?

Modeling assumptions

e Mass, spring, and damper constants
are fixed and known

e Springs satisfy Hooke’s law

e Damper is (linear) viscous force,
proportional to velocity
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Modeling a Spring Mass System

Converting models to state space form

» Construct a vector of the variables that
are required to specify the evolution of
the system

» Write dynamics as a system of first order
differential equations:

d
d—f: (,u) xeR" uelR?P
y = h(x) y € RY
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Model: rigid body physics (Ph 1)
® Sum of forces = mass *
acceleration

e Hooke’s law: F' = k(X - xrest)

® \/iscous friction: F=cv

migi = ka(q@2 — 1) — k1a
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Review: Second Order Differential Equations

mq+cq+ kq=u

Particular response: zero initial conditions
e ¢(0)=0,4(0)=0
® Response to constant (step) input, u(t) = F

ALV VAN
f|

F
q(t) = 5 (1 — e %0t coswyt + #e_c‘”ot sin wdt)
mw§

e Response to sinusoidal input, u(f) = Asin w t

q(t) = MAsin(wt +0) — MAsing,  Me" =

wi — w? + 2iwow
e Form of the solution: sinusoid at same frequency, with shift in mag & phase
e Solving by hand is a mess; we will learn much better ways later

Complete solution: homogeneous + particular
e \Warning: be careful to make sure the initial conditions are satisfied
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More General Forms of Differential Equations

State space form

Z—f: (z,u) %:AafﬁLBu
y = h(z,u) y = Cx+ Du

General form Linear system

Higher order, linear ODE

dnq N n—lq N N
- a . e an = U
g g1 1
n—lq
y="bh e oo F bp—1q + bpg
[z | [—ay
T 2y ] rd" g /dt" 1 o 1
o d2q/drn=2| | & |z _ | 0
o , _ : dt :
Tp_1 dq/dt | 2, | | 0
L Tn A _ q i
Y= [bl ba
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e x = state; nth order

e u = input; will usually setp =1
 y = output; will usually set q = 1
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Simulation of a Mass Spring System

H ut > Steady state frequency response

4> ® Force the system with a sinusoid

e Plot the “steady state” response, after
m|| my transients have died out

/\/\A/V\/M/\AW/\N\N\)- ® Plot relative magnitude and phase of

k, k, ks output versus input (more later)

E[E—é Matlab simulation (see handout)

function dydt = f(t, vy, ...)
Frequency Response u = 0.00315*cos (omega*t) ;
dydt = [

y(3);

y(4);

- (k1+k2)/ml*y (1) + k2/ml*y(2);

k2/m2%y (1) - (k2+k3)/m2*y (2)

- ¢/m2*y (4) + k3/m2*u 1;

Gain (log scale)

90 T

180 | [t,y] = oded5 (dydt, tspan,y0,[], kI,
270 F . k2, k3, ml, m2, c, omega);

Phase [deg]

-360
0.1 1 10
Frequency [rad/sec]
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Modeling Terminology

State captures effects of the past

e independent physical quantities that
determines future evolution (absent
external excitation)

Inputs describe external excitation

® Inputs are extrinsic to the system
dynamics (externally specified)

Dynamics describes state evolution
e update rule for system state

e function of current state and any
external inputs

Outputs describe measured quantities

e Qutputs are function of state and
inputs = not independent variables

e Qutputs are often subset of state

H

u(t)

Example: spring mass system
» State: position and velocities of each
mass: 4,,4,,9,-9,
* Input: position of spring at right end of
chain: u(7)
* Dynamics: basic mechanics

* Output: measured positions of the
masses: ¢,,4,
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Modeling Properties

Choice of state is not unique
® There may be many choices of variables that can act as the state
e Trivial example: different choices of units (scaling factor)
e | ess trivial example: sums and differences of the mass positions

Choice of inputs and outputs depends on point of view
e Inputs: what factors are external to the model that you are building

- Inputs in one model might be outputs of another model (eg, the output of a cruise
controller provides the input to the vehicle model)

e Qutputs: what physical variables (often states) can you measure

= Choice of outputs depends on what you can sense and what parts of the
component model interact with other component models

Can also have different types of models
e Ordinary differential equations for rigid body mechanics
e Finite state machines for manufacturing, Internet, information flow
e Partial differential equations for fluid flow, solid mechanics, etc
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Difference Equations

Difference equations model discrete transitions between continuous variables

e “Discrete time” description (clocked transitions)

e New state is function of current state + inputs zlk 1] = f(z[k], ulk])

e State is represented as a continuous variable ylk] = h(z[k])
Example: predator prey dynamics Questions we want to answer

e Given the current population of hares and
Bas lynxes, what will it be next year?

e |[f we hunt down lots of lynx in a given
year, how will the populations be affected?

e How do long term changes in the amount
of food available affect the populations?

Modeling assumptions
e Track population annual (discrete time)

e The predator species is totally dependent
on the prey species as its only food supply

® The prey species has an external food
0 supply and no threat to its growth other

20
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Example #2: Predator Prey Modeling

Discrete Lotka-Volterra model MATLAB simulation (see handout)
e State e Discrete time model, “simulated”
- H[k]  # of rabbits in period k through repeated addition
- L[k]  # of foxes in period k& 250

T T
—— hares — * -lynxes

® |nputs (optional) 2007

- u[k]  amount of rabbit food i
e Qutputs: # of rabbits and foxes
e Dynamics: Lotka-Volterra eqs

—_— —_—

Population

0 | (Y
1850 1860 1870 1880 1890 1900 1910 1920
Year

Hlk + 1) = H[k] + b,(uw)H[k] — aL[k]|H[k),

Lk +1] = L[k] + cL[k]H[k] — d L[], Comparison with data
e Parameters/functions 160
- b,(u) hare birth rate (per period); 1‘2‘8
depends on food supply 128:
- df lynx mortality rate (per period) 4618
-a, c interaction terms 2000 WAL U WA TN/

1845 1855 1865 1875 1885 1895 1905 1915 1925 1935
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Summary: System Modeling

Model = state, inputs, outputs, dynamics

dx
% — f(x,u)
y = h(z)

Principle: Choice of model depends on the questions you want to answer

= u(t) function dydt = f(t,y, k1, k2,
k3, ml, m2, c, omega)
& N u = 0.00315*cos (omega*t) ;
d i Hydt = [
" ™ y(3);
VATATATATAY. ATATAVATAVAY. AVATAVAVANAY oy
k, k, ky ~(k1+k2) /ml*y (1) +
i K2/ml*y (2) ;
[:H: E k2/m2*y (1) - (k2+k3)/m2*y(2)
¢ - b/m2*y (4) + k3/m2*u ];
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