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Note: In the upper left hand corner of the back side of the first page of your homework
set, please put the number of hours that you spent on this homework set (including
reading).

All students should complete the following problems:

1. For each of the following linear systems, determine whether the origin is asymptotically stable
and, if so, plot the step response and frequency response for the system. If there are multiple
inputs or outputs, plot the response for each pair of inputs and outputs.

(a) Coupled mass spring system. Consider the coupled mass spring system we saw in class,
which has a damper on only one of the masses:
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The equations of motion are given by
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Use m = 250, k = 50, b = 10 for the parameter values.

(b) Bridged Tee Circuit. Consider the following electrical circuit, with input vi and output
vo:
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where vc1 and vc2 are the voltages across the two capacitors. Assume that R1 = 100Ω,
R2 = 100Ω and C1 = C2 = 1 × 10−6F.



2. (MATLAB/SIMULINK) Consider the balance system described in Example 2.1 of the text,
using the following parameters:

M = 0.5 kg m = 0.2 kg g = 9.8 m/s

c = 0.1 N/m/sec l = 0.3 m γ = 0

This system has been modeled in SIMULINK in the file hw4balance.mdl, available from the
course web page. (Note: in the SIMULINK model, the output has been set to include all of
the states (y = x). You will need this for part (c) below.)

(a) Use the MATLAB linmod command to numerically compute the linearization of the
original nonlinear system at the equilibrium point (x, θ, ẋ, θ̇) = (0, 0, 0, 0). Compare
the eigenvalues of the analytical linearization (from the text) to those of the one you
obtained with linmod and verify they agree. (Make sure to look at the errata sheet for
the text; there are some small glitches in the equations listed there.)

(b) We can design a stabilizing control law for this system using “state feedback”, which
is a control law of the form u = −Kx (we will learn about this more next week). The
closed loop system under state feedback has the form

ż = (A − BK)z.

Show that the following state feedback stabilizes the linearization of the inverted pen-
dulum on a cart: K = (−1, 18.7,−1.7, 3.5).

(c) Now build a simulation for the closed loop, nonlinear system in SIMULINK. Use the file
hw4balance.mdl for the nonlinear equations of motion in it (you should look in the file
and try to understand how it works). Simulate several different initial conditions and
show that the controller locally asymptotically stabilizes the system to xe from these
initial conditions. Include plots of a representative simulation for an initial condition
that is in the region of attraction of the controller and one that is outside the region of
attraction.

Only CDS 110a students need to complete the following additional problems:

3. Åström and Murray, Ch 5, Exercise 7, parts (a) to (c). For part (b), you can assume that
that matrix A has a full basis of eigenvectors.

4. A simple model for congestion control between N computers connected by a router is given
by the differential equation

ẋi = −b
x2

i

2
+ (bmax − b)

ḃ =

N
∑

i=1

xi − c

where xi ∈ R, i = 1, N are the transmission rates for the sources of data, b ∈ R is the current
buffer size of the router, bmax > 0 is the maximum buffer size, and c > 0 is the capacity of
the link connecting the router to the computers. The ẋi equation represents the control law
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that the individual computers use to determine how fast to send data across the network (this
version is motivated by a protocol called “Reno”) and the ḃ equation represents the rate at
which the buffer on the router fills up. Consider the case where N = 2 (so that we have three
states, x1, x2, and b).

(a) Compute the equilibrium point(s) for the system.

(b) For each equilibrium point, compute the linearization at the equilibrium point.

(c) Using the parameters bmax = 1 Mb and c = 2 Mb/sec, determine whether the equilibrium
point(s) are (locally) stable, asymptotically stable, or unstable.
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Supplemental problems: If you like, you may do any one problems of the following prob-
lems in place of Problem 4. These problems make use of domain-specific knowledge and so
you should only do them if you are comfortable with that problem area. In addition, these
problems are experimental in nature and you should ask questions quickly if you get stuck (it
might not be your fault!).

5. Consider the motion of a small model aircraft powered by a vectored thrust engine, as shown
below.

net thrust

(x, y)

θ

f2

f1

adjustable flaps

Let (x, y, θ) denote the position and orientation of the center of mass of the fan. We assume
that the forces acting on the fan consist of a force f1 perpendicular to the axis of the fan
acting at a distance r and a force f2 parallel to the axis of the fan. Let m be the mass of the
fan, J the moment of inertia, γ the gravitational constant, and D the damping coefficient.
Then the equations of motion for the fan are given by:

mẍ = f1 cos θ − f2 sin θ − dẋ

mÿ = f1 sin θ + f2 cos θ − mγ − dẏ

Jθ̈ = rf1.

It is convenient to redefine the inputs so that the origin is an equilibrium point of the system
with zero input. If we let u1 = f1 and u2 = f2 − mγ then the equations become

mẍ = −mγ sin θ − dẋ + u1 cos θ − u2 sin θ

mÿ = mγ(cos θ − 1) − dẏ + u1 sin θ + u2 cos θ

Jθ̈ = ru1.

(1)

These equations are referred to as the planar ducted fan equations.
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Use the following values for the parameters of the system:

γ = 0.52 m/sec2 m = 4.25 kg

r = 26 cm J = 0.0475 kg m2
d = 0.1 kg/sec

The reason that gravity γ is not 9.8 m/sec2 is because of the presence of a counterweight to
offset the weight of the fan.

(a) Rewrite the equations of motion in state space form (still nonlinear, still symbolic).
Choose x and y as the outputs.

(b) Compute the linearization of the system around the “hover” state: (x, y, θ, ẋ, ẏ, θ̇) =
(0, 0, 0, 0, 0, 0). Your result should be in terms of the symbolic parameters (don’t plug
in the numbers, yet).

(c) Using the parameters above, determine if the linearization is stable, asymptotically sta-
ble, or unstable.

(d) Plot the step and frequency responses of the system from the two inputs to the two
outputs (you should have eight plots total). (Hint: you might want to use the MATLAB
subplot command to save some paper.)

6. (DGC) Consider a simple kinematic model for an automobile with front and rear tires, as
shown below.

mny

mnx

mnl

mnφ

mnθ

The rear tires are aligned with the car, while the front tires are allowed to spin about the
vertical axes. To simplify the derivation, we model the front and rear pairs of wheels as single
wheels at the midpoints of the axles. The dynamics of the system arise by allowing the wheels
to roll and spin, but not slip.

Let (x, y, θ, φ) denote the configuration of the car, parameterized by the xy location of the
rear wheel(s), the angle of the car body with respect to the horizontal, θ, and the steering
angle with respect to the car body, φ. The dynamics of the vehicle are given by

ẋ = cos θu1

ẏ = sin θu1

θ̇ =
1

l
tan φu1

φ̇ = u2
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where u1 corresponds to the forward velocity of the rear wheels of the car and u2 corresponds
to the velocity of the angle of the steering wheel. The parameter l is the wheel base of the
vehicle and we will take this to be l = 3 m (roughly corresponding to Alice).

We wish to construct a model for the lateral (side-to-side) motion of the car, assuming a
nominal trajectory that involves driving in a straight line at a fixed speed. To do this, we will
assume that the car is travelling at speed V0 and that we are only interested in the motion of
the car in the y direction. The resulting equations of motion are given by

ẏ = sin θV0

θ̇ = tan φV0

φ̇ = u

where u is the velocity of the steering wheel.

(a) Compute the equilibrium point(s) for the system.

(b) For each equilibrium point, compute the linearization of the equilibrium point and de-
termine whether the equilibrium points(s) are locally stable, asymptotically stable, or
unstable.

(c) Let V0 = 10 m/s and suppose that we apply a control law of the form

u = k1y + k2θ + k3φ.

Show that you can choose the constants ki such that the linearized system is asymp-
totically stable for straight line motion with y = 0. Using a SIMULINK model for the
full nonlinear system, plot the response of your controller to an initial error of 1 meter,
showing the state trajectory and the inputs as a function of time.
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