

CDS 101: Lecture 9.1 Limits of Performance

Richard M. Murray 22 November 2004

Goals:

- · Describe limits of performance on feedback systems
- Introduce Bode's integral formula and the "waterbed" effect
- Show some of the limitations of feedback due to RHP poles and zeros

Reading:

• Åström and Murray, Analysis and Design of Feedback Systems, Ch 9

Review from Last Week

Loop Shaping for Stability & Performance

• Steady state error, bandwidth, tracking

$$H_{ue}(s) = K_p + K_I \cdot \frac{1}{s} + K_D s$$

Main ideas

- Performance specs give bounds on loop transfer function
- Use controller to shape response
- Gain/phase relationships constrain design approach
- Standard compensators: proportional, PI, PID

22 November 2004

"Gang of Four"

$$\begin{bmatrix} e \\ u \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{1 + PC} & \frac{P}{1 + PC} & \frac{1}{1 + PC} \\ \frac{C}{1 + PC} & \frac{PC}{1 + PC} & \frac{C}{1 + PC} \\ \frac{PC}{1 + PC} & \frac{P}{1 + PC} & \frac{PC}{1 + PC} \end{bmatrix} \begin{bmatrix} r \\ d \\ n \end{bmatrix}$$

Noise and disturbances

- d = process disturbances
- n = sensor noise
- Keep track of transfer functions between all possible inputs and outputs

Design represents a tradeoff between the quantities

- Keep L=PC large for good performance (H_{er} << 1)
- Keep L=PC small for good noise rejection (H_{vn} << 1)

Four unique transfer functions define performance

- Stability is always determined by 1/(1+PC)
- Numerator determined by forward path between input and output

22 Nov 04

R. M. Murray, Caltech CDS

3

Algebraic Constraints on Performance

 $H_{er} = \frac{1}{1 + PC} =: S$ Sensitivity function

$$H_{yn} = rac{PC}{1 + PC} =: T$$
 Complementary sensitivity function

Goal: keep S & T small

- S small \Rightarrow low tracking error
- T small ⇒ good noise rejection (and robustness [CDS 110b])

Problem: S + T = 1

- Can't make both S & T small at the same frequency
- Solution: keep S small at low frequency and T small at high frequency
- Loop again interpretation: keep L large at low frequency, and small at high frequency

 Transition between large gain and small gain complicated by stability (phase margin)

22 Nov 04

R. M. Murray, Caltech CDS

4

22 November 2004

2

Bode's Integral Formula and the Waterbed Effect

Bode's integral formula for S = 1/(1+PC) = 1/(1+L):

- Let p_k be the *unstable* poles of L(s) and assume relative degree of $L(s) \ge 2$
- Theorem: the area under the sensitivity function is a conserved quantity:

$$\int_0^\infty \log_e |S(j\omega)| d\omega = \int_0^\infty \log_e \frac{1}{|1 + L(j\omega)|} d\omega = \pi \sum_{i=1}^\infty \operatorname{Re} p_i$$

Waterbed effect:

- Making sensitivity smaller over some frequency range requires increase in sensitivity someplace else
- Presence of RHP poles makes this effect worse
- Actuator bandwidth further limits what you can do
- Note: area formula is linear in ω,
 Bode plots are logarithmic

22 Nov 04 R. M. Murray, Caltech CDS

5

Example: Magnetic Levitation

System description

- Ball levitated by electromagnet
- Inputs: current thru electromagnet
- Outputs: position of ball (from IR sensor)
- States: z, \dot{z}
- Dynamics: F = ma, F = magnetic force generated by wire coil
- See MATLAB handout for details

Controller circuit

- Active R/C filter network
- Inputs: set point, disturbance, ball position
- States: currents and voltages
- Outputs: electromagnet current

22 Nov 04

R. M. Murray, Caltech CDS

6

22 November 2004 3

22 Nov 04

Equations of Motion Process: actuation, sensing, dynamics $m\ddot{z} = k_m (k_A u)^2 / z^2 - mg$ Electro $v_{ir} = k_T z + v_0$ magnet • u = current to electromagnet• v_{ir} = voltage from IR sensor Linearization: $P(s) = \frac{k}{s^2 - r^2}$ receivier transmitter • Poles at $s = \pm r \Rightarrow$ open loop unstable Nyquist Diagram Bode Diagram 50 Phase (deg); Magnitude (dB) 0 Imaginary Axis -50 0.5 -100 50 0 -50 Note: RHP pole in $L \Rightarrow$ need -100 -150 one net encirclement (CCW) -1.5 10² Frequency (rad/sec)

R. M. Murray, Caltech CDS

Real Axis

7

22 November 2004 4

Performance Limits Nominal design gives low perf **Bode integral limits improvement** • Not enough gain at low frequency $\int_{0}^{\infty} \log |S(j\omega)| d\omega = \pi r$ • Try to adjust overall gain to improve low frequency response • Must increase sensitivity at some • Works well at moderate gain, but point notice waterbed effect Sensitivity Function Step Response 1.2 -10 0.8 -20 0.6 0.4 -30 0.08 0.12 0.16 10 10 10 Time (sec.) Frequency (rad/sec) 22 Nov 04 R. M. Murray, Caltech CDS 9

22 November 2004 5

Example: Lateral Control of the Ducted Fan

- Poles: 0, 0, $-\sigma \pm j \omega_d$
- Zeros: $\pm \sqrt{mgl}$

Source of non-minimum phase behavior

- To move left, need to make $\theta > 0$
- To generate positive θ , need $f_1 > 0$
- Positive f₁ causes fan to move right initially
- Fan starts to move left after short time (as fan rotates)

22 Nov 04

R. M. Murray, Caltech CDS

11

Stability in the Presence of Zeros

Loop gain limitations

• Poles of closed loop = poles of 1 + L. Suppose $C = k n_c/d_c$, where kis the gain of the controller

$$1 + L = 1 + k \frac{n_c n_p}{d_c d_p} = \frac{d_c d_p + k n_c n_p}{d_c d_p}$$

- For large k, closed loop poles approach open loop zeros
- RHP zeros limit maximum gain ⇒ serious design constraint!

Root locus interpretation

- Plot location of eigenvalues as a function of the loop gain k
- · Can show that closed loop poles go from open loop poles (k = 0) to open loop zeros (k = \infty)

22 Nov 04

R. M. Murray, Caltech CDS

22 November 2004

Additional performance limits due to RHP zeros

peak

Reduced sensitivity

⇒ better performance

up to higher frequency

increases

13

Another waterbed-like effect: look at maximum of H_{er} over frequency range:

$$M_1 = \max_{\omega_1 \le \omega \le \omega_2} |H_{er}(j\omega)| \qquad M_2 = \max_{0 \le \omega \le \omega} |H_{er}(j\omega)|$$

Thm: Suppose that P has a RHP zero at z. Then there exist constants c_1 and c_2 (depending on ω_1 , ω_2 , z) such that $c_1 \log M_1 + c_2 \log M_2 \ge 0$.

- M_1 typically $<< 1 \Rightarrow M_2$ must be larger than 1 (since sum is positive)
- If we increase performance in active range (make $M_{\rm 1}$ and $H_{\rm er}$ smaller), we must lose performance ($H_{\rm er}$ increases) some place else
- Note that this affects peaks not integrals (different from RHP poles)

Summary: Limits of Performance

R. M. Murray, Caltech CDS

Many limits to performance

• Algebraic: S + T = 1

22 Nov 04

- RHP poles: Bode integral formula
- RHP zeros: Waterbed effect on peak of S

Main message: try to avoid RHP poles and zeros whenever possible (eg, re-design)

Frequency (rad/sec)

22 November 2004 7