CDS 101: Lecture 8.2 Tools for PID \& Loop Shaping

Richard M. Murray

17 November 2004

Goals:

- Show how to use "loop shaping" to achieve a performance specification
- Introduce new tools for loop shaping design: Ziegler-Nichols, root locus, lead compensation
- Work through some example control design problems

Reading:

- Åström and Murray, Analysis and Design of Feedback Systems, Ch 8

Tools for Designing PID controllers

$$
C(s)=K\left(1+\frac{1}{T_{I} s}+T_{D} s\right)
$$

Zeigler-Nichols tuning

- Design PID gains based on step response
- Works OK for many plants (but underdamped)
- Good way to get a first cut controller
- Frequency domain version also exists

Caution: PID amplifies high frequency noise

- Sol'n: pole at high frequency

Caution: Integrator windup

- Prolonged error causes large integrated error
- Effect: large undershoot (to reset integrator)
- Sol'n: move pole at zero to very small value
- Fancier sol'n: anti-windup compensation

$$
K=1.2 / a \quad T_{I}=2 * L \quad T_{D}=L / 2
$$

Bode Diagrams

Example: PID cruise control

Ziegler-Nichols design for cruise controller

- Plot step response, extract L and a, compute gains

Bode Diagrams

17 Nov 04

$$
P(s)=\frac{1 / m}{s+b / m} \cdot \frac{r}{s+a}
$$

- Result: sluggish \Rightarrow increase loop gain

Pole Zero Diagrams and Root Locus Plots

Pole zero diagram verifies stability

- Roots of $1+$ PC give closed loop poles
- Can trace the poles as a parameter is changed:

$$
C(s)=K\left(1+\frac{1}{T_{5}}+T_{D} s\right)
$$

Root locus = locus of roots as parameter value is changed

- Can plot pole location versus any parameter; just repeatedly solve for roots
- Common choice in control is to vary the loop gain (K)

One Parameter Root Locus

Basic idea: convert to "standard problem": $a(s)+\alpha b(s)=0$

- Look at location of roots as α is varied over positive real numbers
- If "phase" of $a(s) / b(s)=180^{\circ}$, we can always choose a real α to solve eqn
- Can compute the phase from the pole/zero diagram

$\phi_{i}=$ phase contribution from s_{0} to $-p_{i}$
$\psi_{l}=$ phase contribution from s_{0} to $-z_{i}$

$$
\begin{aligned}
& G(s)=\frac{a(s)}{b(s)}=k \frac{\left(s+z_{1}\right)\left(s+z_{2}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \cdots\left(s+p_{n}\right)} \\
& \angle G\left(s_{0}\right)=\angle\left(s_{0}+z_{1}\right)+\cdots+\angle\left(s_{0}+z_{m}\right)- \\
& \angle\left(s_{0}+p_{1}\right)-\cdots-\angle\left(s_{0}+p_{n}\right)
\end{aligned}
$$

Trace out positions in plane where phase $=180^{\circ}$

- At each of these points, there exists gain α to satisfy a(s) $+\alpha b(s)=0$
- All such points are on root locus

Root Locus for Loop Gain

$$
1+\alpha \frac{n(s)}{d(s)} \rightarrow d(s)+\alpha n(s)=0
$$

Loop gain as root locus parameter

- Common choice for control design
- Special properties for loop gain
- Roots go from poles of PC to zeros of PC
- Excess poles go to infinity
- Can compute asymptotes, break points, etc
- Very useful tool for control design
- MATLAB: rlocus

Additional comments

- Although loop gain is the most common parameter, don't forget that you can plot roots versus any parameter
- Need to link root location to performance...

Second Order System Response

Second order system response

- Spring mass dynamics, written in canonical form

Guidelines for pole placement

- Damping ratio gives Re/lm ratio
- Setting time determined by $-\operatorname{Re}(\lambda)$

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \varsigma \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{\left(s+\varsigma \omega_{n}+j \omega_{d}\right)\left(s+\varsigma \omega_{n}-j \omega_{d}\right)} \quad \omega_{d}=\omega_{n} \sqrt{1-\varsigma^{2}}
$$

- Performance specifications

$$
\begin{array}{ll}
T_{r} \approx 1.8 / \omega_{n} & M_{p} \approx e^{-\pi \zeta / \sqrt{1-\varsigma^{2}}} \\
T_{s} \approx 3.9 / \varsigma \omega_{n} & e_{\mathrm{SS}}=0
\end{array}
$$

ζ	M_{p}	Slope
0.707	4%	-1
0.5	16%	-1.7
0.25	44%	-3.9

Effect of pole location on performance

Idea: look at "dominant poles"

- Poles nearest the imaginary axis (nearest to instability)
- Analyze using analogy to second order system

PZmap complements information on Bode/Nyquist plots

- Similar to gain and phase calculations
- Shows performance in terms of the closed loop poles
- Particularly useful for choosing system gain
- Also useful for deciding where to put controller poles and zeros (with practice [and SISOtool])

Step Response

Step Response

8

Example: PID cruise control

Start with PID control design:

$$
\begin{aligned}
& P(s)=\frac{1 / m}{s+b / m} \cdot \frac{r}{s+a} \\
& C(s)=K\left(1+\frac{1}{T_{I} s}+T_{D} s\right)
\end{aligned}
$$

Modify gain to improve performance

- Use MATLAB sisotool
- Adjust loop gain (K) to reduce overshoot and decrease settling time
- $\zeta \approx 1 \Rightarrow$ less than 5% overshoot
- $\operatorname{Re}(\mathrm{p})<-0.5 \Rightarrow T_{s}$ less than 2 sec

Example: Pitch Control for Caltech Ducted Fan

System description

- Vector thrust engine attached to wing
- Inputs: fan thrust, thrust angle (vectored)
- Outputs: position and orientation
- States: $x, y, \theta+$ derivatives
- Dynamics: flight aerodynamics

Control approach

- Design "inner loop" control law to regulate pitch (θ) using thrust vectoring
- Second "outer loop" controller regulates the position and altitude by commanding the pitch and thrust
- Basically the same approach as aircraft control laws

Performance Specification and Design Approach

Design approach

- Open loop plant has poor phase margin
- Add phase lead in 5-50 rad/sec range

Performance Specification

$\cdot \leq 1 \%$ steady state error

- Zero frequency gain > 100
$\cdot \leq 10 \%$ tracking error up to 10 rad/sec
- Gain > 10 from 0-10 rad/sec
$\cdot \geq 45^{\circ}$ phase margin
- Gives good relative stability
- Provides robustness to uncertainty

$$
P(s)=\frac{r}{J s^{2}+d s+m g l}
$$

- Increase the gain to achieve steady state and tracking performance specs
- Avoid integrator to minimize phase

Summary: PID and Root Locus

PID control design

- Very common (and classical) control technique
- Good tools for choosing gains

$$
u=K_{p} e+K_{I} \int e+K_{D} \dot{e}
$$

Bode Diagrams

Root locus

- Show closed loop poles as function of a free parameter

Performance limits

- RHP poles and zeros place limits on achievable performance
- Waterbed effect

