CDS 101: Lecture 8.1
Frequency Domain Design using PID

Richard M. Murray
15 November 2004

Goals:
- Describe the use of frequency domain performance specifications
- Show how to use “loop shaping” using PID to achieve a performance specification

Reading:
- Åström and Murray, Analysis and Design of Feedback Systems, 7.6ff and Ch 8

Review from Last Week

Thm (Nyquist).
\[P \] # RHP poles of \(L(s) \)
\[N \] # CW encirclements
\[Z \] # RHP zeros
\[Z = N + P \]
Frequency Domain Performance Specifications

Specify bounds on the loop transfer function to guarantee desired performance.

\[L(s) = P(s)C(s) \]

\[H_{\omega} = \frac{1}{1 + L} \quad H_{fr} = \frac{L}{1 + L} \]

- Steady state error:
 \[H_{\omega}(0) = 1/(1 + L(0)) \approx 1/L(0) \]
 \[\Rightarrow \text{zero frequency ("DC") gain} \]
- Bandwidth: assuming \(\sim 90^\circ \) phase margin
 \[\frac{L}{1 + L}(j\omega_c) \approx \frac{1}{1 + j} = \frac{1}{\sqrt{2}} \]
 \[\Rightarrow \text{sets crossover freq} \]
- Tracking: \(\times \% \) error up to frequency \(\omega_t \)
 \[\Rightarrow \text{determines gain bound} (1 + PC > 100/X) \]

Relative Stability

Relative stability: how stable is system to disturbances at certain frequencies?

- System can be stable but still have bad response at certain frequencies
- Typically occurs if system has low phase margin \(\Rightarrow \) get resonant peak in closed loop \((M_r) + \) poor step response
- Solution: specify minimum phase margin. Typically 45° or more

\[H_{fr} = \frac{L}{1 + L} \]
Overview of Loop Shaping

Performance specification
- Steady state error
- Tracking error
- Bandwidth
- Relative stability

Approach: “shape” loop transfer function using \(C(s) \)
- \(P(s) + \) specifications given
- \(L(s) = P(s) C(s) \)
 - Use \(C(s) \) to choose desired shape for \(L(s) \)
- Important: can’t set gain and phase independently

Gain/phase relationships

Gain and phase for transfer function w/ real coeffs are not independent
- Given a given shape for the gain, there is a unique “minimum phase” transfer function that achieves that gain at the specified frequencies
- Basic idea: slope of the gain determines the phase
- Implication: you have to tradeoff gain versus phase in control design
Overview: PID control

\[u = K_p e + K_i \int e + K_d \dot{e} \]

Intuition
- Proportional term: provides inputs that correct for “current” errors
- Integral term: insures steady state error goes to zero
- Derivative term: provides “anticipation” of upcoming changes

A bit of history on “three term control”
- First appeared in 1922 paper by Minorsky: “Directional stability of automatically steered bodies” under the name “three term control”
- Also realized that “small deviations” (linearization) could be used to understand the (nonlinear) system dynamics under control

Utility of PID
- PID control is most common feedback structure in engineering systems
- For many systems, only need PI or PD (special case)
- Many tools for tuning PID loops and designing gains (see reading)

Proportional Feedback

Simplest controller choice: \(u = K_p e \)
- Effect: lifts gain with no change in phase
- Good for plants with low phase up to desired bandwidth
- Bode: shift gain up by factor of \(K_p \)
- Nyquist: scale Nyquist contour

\[K_p > 0 \]
Proportional + Integral Compensation

Use to eliminate steady state error
- Effect: lifts gain at low frequency
- Gives zero steady state error
- Bode: infinite SS gain + phase lag
- Nyquist: no easy interpretation
- Note: this example is unstable

\[E(s) = K_p e + K_i \int e + K_d \frac{de}{dt} \]

Proportional + Integral + Derivative (PID)

Transfer function for PID controller
\[u = K_p e + K_i \int e + K_d \frac{de}{dt} \]
\[H_w(s) = K_p + K_i \frac{1}{s} + K_d s \]

- Idea: gives high gain at low frequency plus phase lead at high frequency
- Place \(\omega_1 \) and \(\omega_2 \) below desired crossover freq
Example: Cruise Control using PID - Specification

Performance Specification
- $\leq 1\%$ steady state error
 - Zero frequency gain > 100
- $\leq 10\%$ tracking error up to 10 rad/sec
 - Gain > 10 from 0-10 rad/sec
- $\geq 45^\circ$ phase margin
 - Gives good relative stability
 - Provides robustness to uncertainty

Observations
- Purely proportional gain won’t work: to get gain above desired level will not leave adequate phase margin
- Need to increase the phase from ~ 0.5 to 2 rad/sec and increase gain as well

Example: Cruise Control using PID - Design

Approach
- Use integral gain to make steady state error small (zero, in fact)
- Use derivative action to increase phase lead in the crossover region
- Use proportional gain to give desired bandwidth

Controller

$$C(s) = \frac{2000s^2 + 1.1s + 0.1}{s} = 2200 + \frac{200}{s} + 2000s$$

Closed loop system
- Very high steady state gain
- Adequate tracking @ 1 rad/sec
- $\sim 80^\circ$ phase margin
Example: Cruise Control using PID - Verification

\[P(s) = \frac{1/m}{s + b/m} \frac{r}{s + a} \]
\[C(s) = 2000 \frac{s^2 + 1.1s + 0.1}{s} \]

Summary: Frequency Domain Design using PID

Loop Shaping for Stability & Performance
- Steady state error, bandwidth, tracking
 \[H_{\text{ss}}(s) = K_p + K_i \cdot \frac{1}{s} + K_d s \]

Main ideas
- Performance specs give bounds on loop transfer function
- Use controller to shape response
- Gain/phase relationships constrain design approach
- Standard compensators: proportional, PI, PID