
CDS110a - Wednesday 27 October 2004

Note: there was indeed a unit problem with the reachability matrix in last lecture; see
FAQ.

1. Quick review of reachability and pole-placement
2. State feedback vs. output feedback; note that state feedback is often not the

natural design paradigm
a. Note that stabilization often does not require full knowledge of state,

but state steering and output tracking generally will
b. Example - stabilize the origin for a simple harmonic oscillator -

clearly sufficient just to know velocity for damping
c. Example - steering in the predator-prey system, e.g., would seem to

require full state knowledge
3. Can state be determined from output signal?

a. Multiple output with C a square matrix - invertible?
b. Multiple or single output with C rectangular - sometimes still okay if

K has low "support" (just a remark)
c. Look at an example with C not invertible, but where intuitively you

should be okay
4. State estimation by derivatives, as in readings

a. Observability matrix and observability
b. Note problems with this approach in finite precision

5. State observer with innovations
a. Derive
b. Show that this reduces to a pole-placement problem
c. Same observability criterion as above...
d. Mention duality with controllability scenario

6. Output feedback; theorem on pole-placement with an observer

A quick review of reachability
Last time we saw that a linear system

ẋ  Ax  Bu
is reachable if the reachability matrix

B AB A2B  An−1B
has full rank. This means that for any initial state x0  x0, desired final state xf and
‘target time’ T it is possible to find a control input ut, t ∈ 0,T that steers the system
to reach xT  xf. If a system is reachable, it is furthermore possible to solve the pole
placement problem, in which we want to design a state feedback law
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u  Kx
such that we can pick any eigenvalues we want for the controlled dynamics

ẋ  Ax  Bu
 A  BKx.

Here A and B are given, and we must find a K to achieve the desired eigenvalues for
A  BK.

Before moving on, let’s look at a simple example (from Åström and Murray, Ex.
5.3) of a system that is not reachable:

d
dt

x1

x2
 −

1 0
0 1

x1

x2


1
1

u.

Here we can easily compute

Wr 
1
1

−1
−1

,

which clearly has determinant zero. This can be understood by noting the complete
‘symmetry’ of the way that u modifies the evolution of x1 and x2. For example, if
x10  x20 there is no way to use u to achieve x1T ≠ x2T at any later time.

State feedback versus output feedback
Note that in our discussion of stabilization and pole-placement so far, we have
assumed that it makes sense to design a control law of the form

u  Kx.
This is called a ‘state feedback’ law since in order to determine the control input ut at
time t, we generally need to have full knowledge of the state xt. In practice this is
often not possible, and thus we usually specify the available output signals when
defining a control design problem:

ẋ  Ax  Bu,
y  Cx.

Here the output signal yt, which can in principle be a vector of any dimension,
represents the information about the evolving system state that is made available to
the controller via sensors. An ‘output feedback’ law must take the form

ut  f y ≤ t,
where, in general, we can allow ut to depend on the entire history of y with  ≤ t
(more on this below and later in the course). Output feedback is a natural setting for
practical applications. For example, if we are talking about cruise control for an
automobile, x may represent a complex set of variables having to do with the internal
state of the engine, wheels and chassis while y is only a readout from the
speedometer. Hopefully it will seem natural that it is usually prohibitively difficult to
install a sensor to monitor every coordinate of the system’s state space, and also that
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it will often be unnecessary to do so (cruise control electronics can function quite well
with just the car’s speed).

One simple example of a system in which full state knowledge is clearly not
necessary is stabilization of a simple harmonic oscillator. If the natural dynamics of the
plant is

mẍ  −kx,
and our actuation mechanism is to apply forces directly on the mass, then the control
system looks like

d
dt

x1

x2


0 1
−k
m 0

x1

x2


0
1

u,

(where x1 is now the position and x2 the velocity). We can clearly stabilize the
equilibrium point at the origin by the feedback law

u  −bx2  0 −b
x1

x2
,

which makes the overall equation of motion
ẍ1  − k

m x1 − bẋ1,
which we recognize as a damped harmonic oscillator. Thus it is clear that the
controller only needs to know the velocity of the oscillator in order to implement a
successful feedback strategy. So even if we go to a SISO output feedback formulation
of this problem,

ẋ  Ax  Bu,
y  Cx,

we are obviously fine for any C of the form  ≠ 0

C  0  ,

since x2  y/ and we can implement an output-feedback law of the form
u  −bx2  − b

 y.

In contrast to this, imagine a steering problem for the predator-prey system that we
talked about in the last lecture. Suppose for instance we want to design a controller
that will take the fox and rabbit population from an arbitrary initial state at t  0 to
some specific final state such as 36,51 at time t  T. Even if we restrict our attention
to the immediate vicinity of the natural equilibrium point, and assume that a linearized
model is sufficient for the design, it seems quite unlikely that we could succeed without
requiring knowledge of both the fox and rabbit populations at time t  0.

Clearly, if C is a square matrix and y has the same dimension as x, everything will
be easy if C is invertible. As a generalization of what we did for the simple harmonic
oscillator above, we could just design a state feedback controller K, set

x̂  C−1y,
and apply feedback
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u  Kx̂  KC−1y.
However this is a special case and not the sort of convenience we want to count on!

State estimation
At this point it might seem like we would need completely new theorems about
reachability and pole-placement for output-feedback laws, when ut is only allowed to
depend on y  t. However, it turns out that we can build naturally on our previous
results by appealing to a separation method. The basic idea is that we will try to
construct a procedure for processing the data y  t to obtain an estimate x̂t of the
true system state xt, and then apply a feedback law u  Kx̂ based on this estimate.
This can be possible even when C is not invertible (not even square). The controller
thus assumes the structure of a dynamical system itself, with yt as its input, ut as
its output and x̂t as its internal state. There are various ways of designing ‘state
estimators’ to extract x̂t from y  t, of which we will discuss two, and there is also
a convenient procedure for determining whether or not y contains enough information
to make full state reconstruction possible in principle. The latter test looks a lot like the
test for reachability, for not accidental reasons.

Let’s start by thinking about the simple harmonic oscillator again. We noted that in
order to stabilize the equilibrium point at the origin, it would be most convenient to
have an output signal that told us directly about its velocity x2. However, you may
have already realized that in a scenario with  ≠ 0

C   0 ,

y  x1,
it should be simple to obtain a good estimate of x2 via

x̂2  d
dt 

−1y.

This is certainly a valid procedure for estimating x2, although in practice one should be
wary of taking derivatives of measured data since that tends to accentuate
high-frequency noise.

In a similar spirit, we note that for any dynamical system
ẋ  Ax  Bu,
y  Cx,

if we hold u at zero we can make use of the general relations
ẏ  Cẋ  CAx,

ÿ  Cẍ  C d
dt ẋ  C d

dt Ax  CAẋ  CA2x,


d n

dtn y  CAnx.

If we look at how this applies to our modified simple harmonic oscillator example with
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C   0 , A 
0 1
− k

m 0
,

y  C
x1

x2
 x1,

we have

CA   0
0 1
− k

m 0
 0  ,

ẏ  CA
x1

x2
 x2,

and we start to get a sense for how the natural dynamics A can move information
about state space variables into the ‘support’ of C. Hopefully it should thus seem
reasonable that in order for a system to be observable, we require that the
observability matrix

Wo 

C
CA
CA2



CAn−1

have full rank. Informally, if a system is observable then we are guaranteed that we
can design a procedure (such as the derivatives scheme above) to extract a faithful
estimate x̂ from y. However, it will generally be necessary to monitor y for some time
(and with good accuracy) before the estimation error

x̃t ≡ xt − x̂t
can be made small. In the derivatives scheme, for instance, we can’t estimate high
derivatives of yt until we see enough of it to get an accurate determination of its
slope, curvature, etc.

State observer with innovations
A more common (and more robust) method for estimating x from y is to construct a
state observer that applies corrections to an initial guess x̂ until Cx̂ becomes an
accurate predictor of y.

Suppose that at some arbitrary point in time t we have an estimate x̂t. How
should we update this estimate to generate estimates of the state xt ′ with t ′  t ?
Most simply, we could integrate

d
dt x̂  Ax̂  Bu,
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assuming we know A and B for the plant. It is generally assumed that we know u since
this signal is under our control! Then we notice that the estimation error x̃ evolves as

d
dt x̃  d

dt x − x̂

 Ax  Bu − Ax̂  Bu
 Ax − x̂
 Ax̃.

Hence, this strategy has the nice feature that if A is stable,
lim
t→

x̃  0,

meaning that our estimate will eventually converge to the true system state. Note that
this works even if B and u are non-zero.

What if we are not so lucky as to have sufficiently stable natural dynamics A? As
mentioned above, a good strategy is to try to apply corrections to x̂ at every time step,
in proportion to the so-called innovation,

w ≡ y − Cx̂.
Here y − Cx̂ is the error we make in predicting yt on the basis of x̂t. Clearly when x̃
is small, so is w. A ‘Luenberger state observer’ can thus be constructed as

d
dt x̂  Ax̂  Bu  Ly − Cx̂,

where L is a ‘gain’ matrix that is left to our design. This observer equation results in
d
dt x̃  ẋ − d

dt x̂

 Ax − Bu − Ax̂  Bu  Ly − Cx̂
 Ax − x̂ − Ly − Cx̂
 Ax − x̂ − LCx − x̂
 A − LC x̃.

Hence we see that our design task should be to choose L, given A and C, such that
A − LC has nice stable eigenvalues.

This should remind you immediately of the pole-placement problem in state
feedback, in which we wanted to choose K, given A and B, such that A  BK had
desired eigenvalues. Indeed, one can map between the two problems by noting that
the transpose of a matrix MT has the same eigenvalues as M. Thus we can view our
observer design problem as being the choice of LT such that

A − LCT  AT − CTLT

has nice stable eigenvalues, and this now has precisely the same structure as before.
Indeed, there is a complete ‘duality’ between state feedback and observer design, with
correspondences

A ↔ AT, B ↔ −CT, K ↔ LT, Wr ↔ Wo
T.

(Note that if we use a state feedback law u  −Kx in the original pole-placement
problem, rather than u  Kx as we did in L5.1, we recover B ↔ CT.) Hence it should be
clear, for example, how Matlab’s place function can be used for observer design. And
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as long as the observability matrix has full rank, we are guarenteed to be able to find
an L such that A − LC has arbitrary desired eigenvalues.

Note: Matlab’s place function assumes that you are using u  −Kx. Thus if you
call

place(A,B,eigs)
it will return a matrix K such that A − BK has the requested eigenvalues.

Pole-placement with output feedback
As discussed in section 5.6 of Åström and Murray, the following theorem holds (here
we simplify to the r  0 case):

For a system
ẋ  Ax  Bu,
y  Cx,

the controller described by
u  −Kx̂,

d
dt x̂  Ax̂  Bu  Ly − Cx̂

gives a closed-loop system with the characteristic polynomial
detsI − A  BKdetsI − A  LC.

This polynomial can be assigned arbitrary roots if the system is observable
and reachable.

The overall setup is summarized in the following cartoon:

plant

controller

yu

plant

controller

yu
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