
Chapter 9

Robustness and Performance

Quotation

Authors, citation.

This chapter treats robustness and performance. It begins with analysis
of a simple controller. It is shown that seemingly reasonable design choices
gives a closed loop system that is extremely sensitivity to parameter varia-
tions. New concepts, which give intuition and make it possible to character-
ize robustness and performance quantitatively, are introduced. Properties
that fundamentally limits achievable performance are also discussed.

9.1 Introduction

Fundamental properties of feedback systems will be explored in this chap-
ter. There are many requirements on a control system the ability to follow
reference signals, to suppress external disturbances and effects if measure-
ment noise and process variations. It is important to understand all these
issues both to be able to analyze, and specify a system. Trade-offs between
robustness and performance is a key issue for design.

Robustness is the ability of the closed loop system to be insensitive to
component variations. It is one of the most useful properties of feedback.
Robustness is also what make it possible to design feedback system based
on strongly simplified models. It is therefore essential to have a good un-
derstanding of robustness and to have ways of expressing it quantitatively.
One of the key questions is to describe variations in system dynamics. Using
state space concepts this can be done by varying the parameters of a system.
There are however many variations that are not captured by such an ap-
proach. For example, some dynamic phenomena many have been neglected.
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224 CHAPTER 9. ROBUSTNESS AND PERFORMANCE

If they were included the model would have had more states. There may also
be small time delays that have been neglected in a model. For linear model
variations are well captured by transfer functions. Using transfer functions
it is possible make perturbations that correspond to additional dynamics as
well as time delays.

It is also necessary to have quantitative ways to express how well a
feedback system performs. Measures of performance and robustness are
closely related. The sensitivity function introduced in Section ?? expresses
both how well disturbances are affected by feedback and how sensitive the
closed loop system is to small perturbations of the process dynamics. The
fact that similar concepts are used makes it easy to make trade-offs between
robustness and performance.

The structure of a feedback controller is another fundamental issue.
There is a sharp distinction between two classes of systems. In systems
with error feedback only the error signal is accessible through the sensors. A
typical example is track following in a CD player where only the deviation
from the track is measured. In other systems both the reference and the
process output are available for measurement. It is then possible to com-
pletely separate command signal following from robustness and disturbance
attenuation by using a controller with two degrees of freedom. The feedback
is designed to deal with disturbances and robustness and feedforward is used
to obtain the desired response to command signals. It is possible to have a
complete decoupling of command signal following from disturbance atten-
uation and robustness. For systems with error feedback all issues must be
deal with using feedback.

When specifying the performance of a control system it is common prac-
tice to relate it to how well the system is able to follow command signals.
This is not sufficient. For linear systems where the controller has error feed-
back it is necessary to consider four transfer functions, the Gang of Four, to
have a complete understanding of the behavior of the system. For a system
with a controller having two degrees of freedom it is necessary to consider
six transfer functions, the Gang of Six, to completely specify the behavior
of the system. The specifications should also reflect this. It is interesting
that in spite of all complications specifications for many problems can be
captured by a few parameters.

Some systems are intrinsically difficult to control, typical examples are
unstable systems with time delay. It is important to understand the un-
derlying reasons and to have some feel for how they relate to fundamental
system properties and to sensing and actuation. If the difficulties can be
spotted at an early stage of the design they can be remedied by moving or
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adding sensors and actuators or by redesigning the system. This is one of
the strong reasons for investigating dynamics and control at an early stage
of a design. It is also a reason why design engineers should be aware of
dynamics and control.

9.2 An Example

We will begin by a simple applications of controller design using state feed-
back and observers. Consider the system

dx

dt
= Ax+Bu =

[

−1 0
1 0

]

x+

[

a− 1
1

]

u

y = Cx =
[

0 1
]

y.

(9.1)

The system has the transfer function

GP (s) = C[sI −A]−1B =
s+ a

s(s+ 1)
(9.2)

State Feedback

We will begin by designing a state feedback assuming all states can be
measured. The reachability matrix

Wr =

[

a− 1 −a+ 1
1 a− 1

]

has the determinant detWr = a(a − 1). The system is thus reachable if a
is neither 0 nor 1. A state feedback will first be designed assuming that all
states are measured. The feedback

u = −l1x1 − l2x2 = −Lx (9.3)

gives the closed loop system

dx

dt
= (A−BL)x

where

A−BL =

[

−1 0
1 0

]

−
[

a− 1
1

]

[

l1 l2
]

=

[

−1 − (a− 1)l1 −(a− 1)l2
1 − l1 −l2

]

.
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This matrix has the characteristic polynomial

det

[

s+ 1 + (a− 1)l1 (a− 1)l2
l1 − 1 s+ l2

]

= s2 + (1 + (a− 1)l1 + l2)s+ al2.

Assume that a closed loop system with the characteristic polynomial

s2 + 2ζcωcs+ ω2
c

is desired. Equating coefficients of equal power of s gives

1 + (a− 1)l1 = 2ζcωc

al2 = ω2
c .

Solving this equation gives the following feedback gains

l1 =
2aζcωc − a− ω2

c

a(a− 1)

l2 =
ω2

c

a

(9.4)

Notice that the gains become infinite for a = 0 and a = 1 when the systems
looses reachability.

An Observer

Next we will design an observer for the system. The observability matrix is

Wo =

[

0 1
1 0

]

This matrix has full rank and there are thus no restrictions in designing the
observer. The observer is given by

dx̂

dt
= Ax+Bu+K(y −Cx) =

[

−1 0
1 0

]

x̂+

[

a− 1
1

]

u+

[

k1

k2

]

(y −
[

0 1
]

x̂)

(9.5)
It follows from Equations (9.1) and (9.5) that the observer error is given by

dx̃

dt
= (A−KC)x̃ =

[

−1 0
1 0

]

x̃−
[

k1

k2

]

[

0 1
]

x̃ =

[

−1 −k1

1 −k2

]

x̃

This system has the characteristic polynomial

det

[

s+ 1 k1

−1 s+ k2

]

= s2 + (1 + k2)s+ k1 + k2.
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Requiring the observer should have the characteristic polynomial

s2 + 2ζoωos+ ω2
o ,

we find that

1 + k2 = 2ζoωo

k1 + k2 = ω2
o

Solving this equation gives

k1 = ω2
o − 2ζoωo + 1

k2 = 2ζoωo − 1
(9.6)

Output Feedback

A controller with output feedback can now be obtained by combining the
state feedback given by Equation (9.3) with the observer given by Equa-
tion (9.5). The controller then becomes

dx̂

dt
= Ax̂+Bu+K(y − Cx̂) = (A−BL−KC) +Ky

u = −Lx̂
(9.7)

where the parameters are given by (9.4) and (9.6). The controller has the
transfer function

C(s) = L[sI −A+BL+KC]−1K

=
[

l1 l2
]

[

s+ 1 + (a− 1)l1 (a− 1)l2 + k1

l1 − 1 s+ l2 + k2

]−1 [
k1

k2

]

=
(k1l1 + k2l2)s+ (k1 + k2)l2

s2 + (1 + k2 + (a− 1)l1 + l2)s+ (k1 + k2)(1 − l1) + a(k1l1 + l2)
(9.8)

The calculations are somewhat tedious but they can be done very comfort-
ably using Matlab in a straight forward manner. Since

C(s) = L[sI −A+BL+KC]−1K = KT [SI −AT + CTKT + LTBT ]−1LT

it follows that the controller transfer function does not depend on which
closed loop poles are associated with state feedback and which are associated
with the observer.
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The closed loop system is described by the equations

d

dt

[

x
x̂

]

=

[

A −BL
KC A−BL−KCx̂

] [

x
x̂

]

= Acl

[

x
x̂

]

.

The properties of the closed loop system will now be illustrated by a numer-
ical example.

A Numerical Example

To illustrate some properties of the system introduce a = 1.25, the poles of
the state feedback are chosen as −3± 4i (ωc = 5, ζc = 0.6) and the observer
poles as −6 ± 8i (ωo = 10, ζo = 0.6). The feedback gain is

L =
[

−60 20
]

,

the observer gain is

L =
[

89 11
]T
,

and the closed loop system has the dynamics matrix

Acl =









−1 0 15 −5
1 0 60 −20
0 89 14 −94
0 11 61 −31









.

The matrix is changed to

Acl =









−1 0 15.3 −5.1
1 0 61.2 −20.4
0 89 14 −94
0 11 61 −31









,

the process gain is increased by 2%. Notice that only the elements in the
upper left block are changed by 2%. This matrix has the eigenvalues 0.19±
6.73i, -3.88 and -14.50. We thus have the strange situation that a design that
looks very reasonable with very well damped closed loop poles at −3 ± 4i
and −6 ± 8i results in a closed loop system that is extremely sensitive to
parameter variations. The reason is not poor reachability. The reachability
matrix is

Wr =

[

0.25 −0.25
1 0.25

]

which is well conditioned.
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Figure 9.1: Bode (left) and Nyquist (right) plots of the loop transfer function
(9.9).

Gain and Phase Margins

To get additional insight into the system we will calculate the gain and phase
margins of the system. The controller transfer function for a = 1.25 is

C(s) =
−5120s+ 2000

s2 + 17s+ 5300
.

Notice that the controller has a zero in the right half plane. The loop transfer
function is

L(s) = P (s)C(s) =
(s+ 1.25)(−5120s+ 2000)

s(s+ 1)(s2 + 17s+ 5300)
(9.9)

The Bode and Nyquist plots of the loop transfer function is shown in Fig-
ure 9.1 The bode plot shows that the gain of the loop transfer functions
is very close to one for frequencies in the range 1 to 20 rad/s. The gain
crossover frequency is ωgc = 3.14 and the phase is very close to −180◦ for
frequencies around ωgc. There is also a resonance peak at the frequency
ω =

√
5300 = 72.8, which is caused by the poorly damped poles of the loop

transfer function (9.9). The system has very poor stability margins, the
gain margin is gm = 1.019. This is the reason why the closed loop system
becomes unstable when the loop gain is increased by 2%. The phase margin
is ϕm = 2.45◦. The poor stability margins are also clearly visible in the
Nyquist plot which comes very close to the critical point. The circular bulb
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Figure 9.2: Block diagram of a basic feedback loop.

in the Nyquist plot is due to the poorly damped poles s = −8.5 ± 72.3i of
the controller transfer function.

Summary

We thus have the seemingly contradictory situation that a controller design
that seems quite reasonable gives a closed loop system with very poor ro-
bustness. One immediate conclusion is that it is not sufficient to require
that a system is reachable and observable and that the robustness of a de-
sign based must always be checked a posteriori. It would however be useful
to have more insight and in particular to understand what has to be done
to obtain a closed loop system that is robust. This requires new concepts
that will be developed in the next sections.

9.3 The Basic Feedback Loop

We will start by investigating some key properties of the feedback loop. A
block diagram of a basic feedback loop is shown in Figure 9.2. The system
loop is composed of two components, the process and the controller. The
controller has two blocks the feedback block C and the feedforward block
F . There are two disturbances acting on the process, the load d isturbance d
and the measurement noise n. The load disturbance represents disturbances
that drive the process away from its desired behavior. The process variable x
is the real physical variable that we want to control. Control is based on the
measured signal y, where the measurements are corrupted by measurement
noise n. Information about the process variable x is thus distorted by the
measurement noise. The process is influenced by the controller via the
control variable u. The process is thus a system with three inputs and
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Figure 9.3: An abstract representation of the system in Figure 9.2. The
input u represents the control signal and the input w represents the reference
r, the load disturbance d and the measurement noise n. The output y is the
measured variables and z are internal variables that are of interest.

one output. The inputs are: the control variable u, the load disturbance
d and the measurement noise n. The output is the measured signal. The
controller is a system with two inputs and one output. The inputs are the
measured signal y and the reference signal r and the output is the control
signal u. Note that the control signal u is an input to the process and the
output of the controller and that the measured signal is the output of the
process and an input to the controller. In Figure 9.2 the load disturbance
was assumed to act on the process input. This is a simplification, in reality
the disturbance can enter the process in many different ways. To avoid
making the presentation unnecessarily complicated we will use the simple
representation in Figure 9.2. This captures the essence and it can easily be
modified if it is known precisely how disturbances enter the system.

More General Representation

The block diagrams themselves are substantial abstractions but higher ab-
stractions are sometimes useful. The system in Figure 9.2 can be represented
by only two blocks as shown in Figure 9.3. There are two types of inputs,
the control u, which can be manipulated and the disturbances w = (r, d, n),
which represents external influences on the closed loop systems. The out-
puts are also of two types the measured signal y and other interesting signals
z = (e, v, x). The representation in Figure 9.3 allows many control variables
and many measured variables, but it shows less of the system structure than
Figure 9.2. This representation can be used even when there are many input
signals and many output signals. It can also deal with the case when sen-
sors and actuators have dynamics and when disturbances enter the system
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in other ways than shown in Figure 9.2. Representation with a higher level
of abstraction are useful for the development of theory because they make
it possible to focus on fundamentals and to solve general problems with a
wide range of applications. Care must, however, be exercised to maintain
the coupling to the real world control problems we intend to solve.

Disturbances

Attenuation of load disturbances is often a primary goal for control. This
is particularly the case when controlling processes that run in steady state.
Load disturbances are typically dominated by low frequencies. Consider
for example the cruise control system for a car, where the disturbances
are the gravity forces caused by changes of the slope of the road. These
disturbances vary slowly because the slope changes slowly when you drive
along a road. Step signals or ramp signals are commonly used as prototypes
for load disturbances disturbances.

Measurement noise corrupts the information about the process variable
that the sensors delivers. Measurement noise typically has high frequencies.
The average value of the noise is typically zero. If this was not the case the
sensor will give misleading information about the process and it would not
be possible to control it well. There may also be dynamics in the sensor.
Several sensors are often used. A common situation is that very accurate
values may be obtained with sensors with slow dynamics and that rapid but
less accurate information can be obtained from other sensors. The sensors
may also have dynamics. Also notice that measurement noise only influences
the process indirectly via the feedback.

Actuation

The process is influenced by actuators which typically are valves, motors,
that are driven electrically, pneumatically, or hydraulically. There are often
local feedback loops and the control signals can also be the reference vari-
ables for these loops. A typical case is a flow loop where a valve is controlled
by measuring the flow. If the feedback loop for controlling the flow is fast
we can consider the set point of this loop which is the flow as the control
variable. In such cases the use of local feedback loops can thus simplify the
system significantly. When the dynamics of the actuators is significant it is
convenient to lump them with the dynamics of the process. There are cases
where the dynamics of the actuator dominates process dynamics.
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Design Issues

Many issues have to be considered in analysis and design of control systems.
The basic requirements are

• Stability

• Ability to follow reference signals (performance)

• Reduction of effects of load disturbances (performance)

• Reduction of effects of measurement noise (performance)

• Reduction of effects of model uncertainties (robustness)

Instability is the major drawback of feedback. Avoiding instability is thus
a primary goal. It is also desirable that the process variable follows the ref-
erence signal faithfully. The system should also be able to reduce the effect
of load disturbances. Measurement noise is injected into the system by the
feedback. This is unavoidable but it is essential that not too much noise is
injected. It must also be considered that the models used to design the con-
trol systems are inaccurate. The properties of the process may also change.
The control system should be able to cope with moderate changes, which is
not a trivial task as is illustrated by the example in Section ??. The relative
importance of the different abilities vary with the application. In process
control the major emphasis is often on attenuation of load disturbances,
while the ability to follow reference signals is the primary concern in motion
control systems. In other cases robustness may be the main requirement.

9.4 The Gangs of Four and Six

The feedback loop in Figure 9.2 is influenced by three external signals, the
reference r, the load disturbance d and the measurement noise n. There
are at least three signals x, y and u that are of great interest for control.
This means that there are nine relations between the input and the output
signals. Since the system is linear these relations can be expressed in terms
of the transfer functions. Let X, Y , U , D, N R be the Laplace transforms
of x, y, u, d, n r, respectively. The following relations are obtained from the
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block diagram in Figure 9.2

X =
P

1 + PC
D − PC

1 + PC
N +

PCF

1 + PC
R

Y =
P

1 + PC
D +

1

1 + PC
N +

PCF

1 + PC
R

U = − PC

1 + PC
D − C

1 + PC
N +

CF

1 + PC
R.

(9.10)

To simplify notations we have dropped the arguments of all Laplace trans-
forms. There are several interesting conclusions we can draw from these
equations. First we can observe that several transfer functions are the same
and that all relations are given by the following set of six transfer functions
which we call the Gang of Six.

PCF

1 + PC

PC

1 + PC

P

1 + PC
CF

1 + PC

C

1 + PC

1

1 + PC
,

(9.11)

The transfer functions in the first column give the response of process vari-
able and control signal to the set point. The second column gives the same
signals in the case of pure error feedback when F = 1. The transfer function
P/(1 + PC) in the third column tells how the process variable reacts to
load disturbances the transfer function C/(1 + PC) gives the response of
the control signal to measurement noise.

Notice that only four transfer functions are required to describe how
the system reacts to load disturbance and the measurement noise and that
two additional transfer functions are required to describe how the system
responds to set point changes.

The special case when F = 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedback from the error
only. In this case the system is completely characterized by four transfer
functions, namely the four rightmost transfer functions in (9.11), i.e.

PC

1 + PC
, the complementary sensitivity function

P

1 + PC
, the load disturbance sensitivity function

C

1 + PC
, the noise sensitivity function

1

1 + PC
, the sensitivity function

(9.12)
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These transfer functions and their equivalent systems are called the Gang
of Four. The transfer functions have many interesting properties that will
be discussed in the following. A good insight into these properties are essen-
tial for understanding feedback systems. The load disturbance sensitivity
function is sometimes called the input sensitivity function and the noise
sensitivity function is sometimes called the output sensitivity function.

Systems with Two Degrees of Freedom

The controller in Figure 9.2 is said to have two degrees of freedom because
the controller has two blocks, the feedback block C which is part of the
closed loop and the feedforward block F which is outside the loop. Using
such a controller gives a very nice separation of the control problem because
the feedback controller can be designed to deal with disturbances and pro-
cess uncertainties and the feedforward will handle the response to reference
signals. Design of the feedback only considers the gang of four and the feed-
forward deals with the two remaining transfer functions in the gang of six.
For a system with error feedback it is necessary to make a compromise. The
controller C thus has to deal with all aspects of the problem.

To describe the system properly it is thus necessary to show the response
of all six transfer functions. The transfer functions can be represented in dif-
ferent ways, by their step responses and frequency responses, see Figures 9.4
and 9.5. Figures 9.4 and 9.5 give useful insight into the properties of the
closed loop system. The time responses in Figure 9.4 show that the feedfor-
ward gives a substantial improvement of the response speed. The settling
time is substantially shorter, 4 s versus 25 s, and there is no overshoot. This
is also reflected in the frequency responses in Figure 9.5 which shows that
the transfer function with feedforward has higher bandwidth and that it has
no resonance peak.

The transfer functions CF/(1 + PC) and −C/(1 + PC) represent the
signal transmission from reference to control and from measurement noise
to control. The time responses in Figure 9.4 show that the reduction in
response time by feedforward requires a substantial control effort. The initial
value of the control signal is out of scale in Figure 9.4 but the frequency
response in 9.5 shows that the high frequency gain of PCF/(1 + PC) is
16, which can be compared with the value 0.78 for the transfer function
C/(1 + PC). The fast response thus requires significantly larger control
signals.

There are many other interesting conclusions that can be drawn from
Figures 9.4 and 9.5. Consider for example the response of the output to load
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Figure 9.4: Step responses of the Gang of Six for PI control k = 0.775,
Ti = 2.05 of the process P (s) = (s + 1)−4. The feedforward is designed to
give the transfer function (0.5s+ 1)−4 from reference r to output y.

10
−1

10
0

10
1

10
−1

10
0

10
−1

10
0

10
1

10
−1

10
0

10
−1

10
0

10
1

10
−1

10
0

10
−1

10
0

10
1

10
0

10
1

10
−1

10
0

10
1

10
0

10
1

10
−1

10
0

10
1

10
0

10
1

PSfrag replacements

PCF/(1 + PC) PC/(1 + PC)

C/(1 + PC)

P/(1 + PC)

CF/(1 + PC) 1/(1 + PC)
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feedforward has been designed to give the transfer function (0.5s + 1)−4

from reference to output.
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disturbances expressed by the transfer function P/(1+PC). The frequency
response has a pronounced peak 1.22 at ωmax = 0.5 the corresponding time
function has its maximum 0.59 at tmax = 5.2. Notice that the peaks are
of the same magnitude and that the product of ωmaxtmax = 2.6. Similar
relations hold for the other responses.

A Practical Consequence

The fact that 6 relations are required to capture properties of the basic
feedback loop is often neglected in literature. Most papers on control only
show the response of the process variable to set point changes. Such a curve
gives only partial information about the behavior of the system and can be
strongly misleading. To get a more complete representation of the system
all six responses should be given. Specifications on a control system should
also reflect this. We illustrate the importance of this by an example.

Example 9.1 (Assessment of a Control System). Consider a process with the
transfer function

P (s) =
1

(s+ 1)(s+ 0.02)

with a PI controller using error feedback with a controller having the transfer
function

C(s) =
50s+ 1

50s
= 1 +

0.02

s
.

The loop transfer function is

L(s) =
1

s(s+ 1)

Notice that the process pole at s = −0.02 is canceled by a controller zero
and that the factor s + 0.02 does not appear in the loop transfer function.
Figure 9.6 shows that the step responses to a reference signal look very
reasonable. Based on these responses we could be tempted to conclude that
the closed loop system is well designed. The step response settles in about
10 s and the overshoot is moderate. In the right part of the figure we show
the responses of y and u to a step in the load disturbance. Notice that the
error decays very slowly.

To explore the system further we will calculate the transfer functions of
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the Gang of Four. We have

PC

1 + PC
=

1

s2 + s+ 1

P

1 + PC
=

s

(s+ 0.02)(s2 + s+ 1)

C

1 + PC
=

(s+ 0.02)(s+ 1)

s2 + s+ 1

1

1 + PC
=

s(s+ 1)

s2 + s+ 1

The responses to the reference signal are given by the transfer function

Gyr(s) =
1

s2 + s+ 1
, Gur(s) =

(s+ 1)(s+ 0.02)

s2 + s+ 1

and the responses to the load disturbance are given by

Gyd(s) =
s

(s+ 0.02)(s2 + s+ 1)
, Gud(s) = − 1

s2 + s+ 1

Notice that the process pole s = 0.02 is canceled by a controller zero. This
implies that the loop transfer function is of second order even if the closed
loop system itself is of third order. The characteristic equation of the closed
loop system is

(s+ 0.02)(s2 + s+ 1) = 0
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where the the pole s = −0.02 corresponds the process pole that is canceled
by the controller zero. The presence of the slow pole s = −0.02 which
appears in the response to load disturbances implies that the output decays
very slowly, at the rate of e−0.02t. The controller will not respond to the
signal e−0.02t. Since the controller has a zero at s = −0.02 the transmission
of the signal is blocked by the controller. This is clearly seen in Figure 9.19,
which shows the response of the output and the control signals to a step
change in the load disturbance. Notice that it takes about 200 s for the
disturbance to settle. This can be compared with the step response in
Figure 9.6 which settles in about 10s.

Having understood what happens it is straight forward to modify the
controller. With the controller

C(s) = 1 +
0.2

s

the response to a step in the load disturbance is as shown in the dashed
curves in Figure 9.6. Notice that drastic improvements in the response to
load disturbance are obtained with only moderate changes in the control
signal. This is a nice illustration of the importance of timing to achieve
good control.

The behavior illustrated in the example is typical when slow process
poles are canceled. The canceled factors do not appear in the loop transfer
function and the sensitivity functions S and T , they do however appear
in the transfer function P/(1 + PC). The canceled modes are not visible
unless they are excited. The effects are even more drastic than shown in the
example if the canceled modes are unstable. This has been known among
control engineers for a long time and a good design rule that cancellation
of slow or unstable process poles by zeros in the controller give very poor
attenuation of load disturbances.

9.5 Disturbance Attenuation

The attenuation of disturbances will now be discussed. For that purpose we
will compare an open loop system and a closed loop system subject to the
same disturbances as is illustrated in Figure 9.7. Let the transfer function
of the process be P (s). The output of the open loop system is

yol(t) = x(t) + n(t).
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Figure 9.7: Open and closed loop systems subject to the same disturbances.

Tracing signals around the loop we find for exponential signals that the
output is

ycl(t) =
1

1 + P (s)C(s)
yol(t) = S(s)yol(t)

where S(s) is the sensitivity function, which belongs to the Gang of Four.
We thus obtain the following interesting result: The output of a system
with feedback can be obtained by sending the output of the open loop system
through a dynamical system with the transfer function S(s). The sensitivity
function thus shows the effect of feedback. Disturbances are attenuated if
their frequencies are such |s(iω) < 1, they are amplified if their frequencies
are such that |s(iω) > 1. The lowest frequency where the sensitivity function
has the magnitude 1 is called the sensitivity crossover frequency and denoted
by ωsc. The maximum sensitivity

Ms = max
ω

|S(iω)| = max
ω

∣

∣

∣

1

1 + P (iω)C(iω)

∣

∣

∣
(9.13)

is an important variable which gives the largest amplification of the distur-
bances. The maximum occurs at the frequency ωms.

A quick overview of how disturbances are influenced by feedback is ob-
tained from the gain curve of the Bode plot of the sensitivity function.
An example is given in Figure 9.8. The figure shows that the sensitivity
crossover frequency is 0.32 and that the maximum sensitivity 2.1 occurs at
ωms = 0.56. Feedback will thus reduce disturbances with frequencies less



9.5. DISTURBANCE ATTENUATION 241

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

PSfrag replacements

ω

|S
(i
ω
)|

+

Figure 9.8: Gain curve of the sensitivity function for PI control (k = 0.8,
ki = 0.4) of process with the transfer function P (s) = (s + 1)−4. The sen-
sitivity crossover frequency is indicated by + and the maximum sensitivity
by o.

than 0.32 rad/s, but it will amplify disturbances with higher frequencies.
The largest amplification is 2.1.

If a record of the disturbance is available and a controller has been
designed the output obtained under closed loop with the same disturbance
can be visualized by sending the recorded output through a filter with the
transfer function S(s).

The sensitivity function can be written as

S(s) =
1

1 + P (s)C(s)
=

1

1 + L(s)
. (9.14)

Since it only depends on the loop transfer function it can also be visualized
graphically in the Nyquist plot of the loop transfer function. This is illus-
trated in Figure 9.9. The complex number 1 + L(iω) can be represented as
the vector from the point −1 to the point L(iω) on the Nyquist curve. The
sensitivity is thus less than one for all points outside a circle with radius 1
and center at −1. Disturbances of these frequencies are attenuated by the
feedback. If a control system has been designed based on a given model it is
straight forward to estimated the potential disturbance reduction simply by
recording a typical output and filtering it through the sensitivity function.

Ä

Random Disturbances

Process disturbances can often be described as stationary stochastic pro-
cesses which can be characterized by their power spectral density φ(ω).
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This physical meaning is that the energy of the signal in the frequency band
ω1 ≤ ω ≤ ω2 is 2

∫ ω2

ω1
φ(ω)dω. If φol(ω) is the power spectral density of the

output in open loop the power spectral density of the closed loop system is

φcl(ω) = |S(iω)|2φol(ω)

and the ratio of the variances of the closed and open loop systems is

σ2
cl

σ2
cl

=

∫∞
−∞ |S(iω)|2φol(ω)dω

∫∞
−∞ φol(ω)dω

9.6 Robustness to Process Variations

Control systems are designed based on simplified models of the processes.
Process dynamics will often change during operation. The sensitivity of a
closed loop system to variations in process dynamics is therefore a funda-
mental issue.
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Risk for Instability

Instability is the main drawback of feedback. It is therefore of interest
to investigate if process variations can cause instability. The sensitivity
functions give a useful insight. Figure 9.9 shows that the largest sensitivity
is the inverse of the shortest distance from the point −1 to the Nyquist
curve.

The complementary sensitivity function also gives insight into allowable
process variations. Consider a feedback system with a process P and a
controller C. We will investigate how much the process can be perturbed
without causing instability. The Nyquist curve of the loop transfer function
is shown in Figure 9.10. If the process is changed from P to P + ∆P the
loop transfer function changes from PC to PC +C∆P as illustrated in the
figure. The distance from the critical point −1 to the point L is |1+L|. This
means that the perturbed Nyquist curve will not reach the critical point −1
provided that

|C∆P | < |1 + L|
which implies

|∆P | <
∣

∣

∣

1 + PC(i

C

∣

∣

∣ (9.15)

This condition must be valid for all points on the Nyquist curve, i.e pointwise
for all frequencies. The condition for stability can be written as

∣

∣

∣

∆P (iω)

P (iω)

∣

∣

∣
<

1

|T (iω)| (9.16)
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A technical condition, namely that the perturbation ∆P is a stable transfer
function, must also be required. If this does not hold the encirclement con-
dition required by Nyquist’s stability condition is not satisfied. Also notice
that the condition (9.16) is conservative because it follows from Figure 9.10
that the critical perturbation is in the direction towards the critical point
−1. Larger perturbations can be permitted in the other directions.

This formula (9.16) is one of the reasons why feedback systems work so
well in practice. The mathematical models used to design control system
are often strongly simplified. There may be model errors and the properties
of a process may change during operation. Equation (9.16) implies that the
closed loop system will at least be stable for substantial variations in the
process dynamics.

It follows from (9.16) that the variations can be large for those frequen-
cies where T is small and that smaller variations are allowed for frequencies
where T is large. A conservative estimate of permissible process variations
that will not cause instability is given by

∣

∣

∣

∆P (iω)

P (iω)

∣

∣

∣
<

1

Mt

where Mt is the largest value of the complementary sensitivity

Mt = max
ω

|T (iω)| = max
ω

∣

∣

∣

P (iω)C(iω)

1 + P (iω)C(iω)

∣

∣

∣
(9.17)

The value of Mt is influenced by the design of the controller. For example
if Mt = 2 pure gain variations of 50% or pure phase variations of 30◦ are
permitted without making the closed loop system unstable. The fact that
the closed loop system is robust to process variations is one of the reason
why control has been so successful and that control systems for complex
processes can indeed be designed using simple models. This is illustrated by
an example.

Example 9.2 (Model Uncertainty). Consider a process with the transfer func-
tion

P (s) =
1

(s+ 1)4

A PI controller with the parameters k = 0.775 and Ti = 2.05 gives a closed
loop system with Ms = 2.00 and Mt = 1.35. The complementary sensitivity
has its maximum for ωmt = 0.46. Figure 9.11 shows the Nyquist curve of the
transfer function of the process and the uncertainty bounds ∆P = |P |/|T |
for a few frequencies. The figure shows that
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for a PI control with k = 0.8 and Ti = 0.4 for the frequencies ω = 0, 0.46
and 1.

• Large uncertainties are permitted for low frequencies, T (0) = 1.

• The smallest relative error |∆P/P | occurs for ω = 0.46.

• For ω = 1 we have |T (iω)| = 0.26 which means that the stability
requirement is |∆P/P | < 3.8

• For ω = 2 we have |T (iω)| = 0.032 which means that the stability
requirement is |∆P/P | < 31

The situation illustrated in the figure is typical for many processes, mod-
erately small uncertainties are only required around the gain crossover fre-
quencies, but large uncertainties can be permitted at higher and lower fre-
quencies. A consequence of this is also that a simple model that describes
the process dynamics well around the crossover frequency is sufficient for
design. Systems with many resonance peaks are an exception to this rule
because the process transfer function for such systems may have large gains
also for higher frequencies.
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Small Gain Theorem

The robustness result given by Equation (9.16) can be given another inter-
pretation. This is illustrated in Figure 9.12 which shows a block diagram
of the closed loop system with the perturbed process in A. Another repre-
sentation of the system is given in B. This representation is obtatined by
combining two of the blocks. The loop transfer function of the system in
Figure 9.12B is

L(s) =
PC

1 + PC
∆P

Equation 9.16 thus simply implies that the largest loop gain is less than one.
Since both blocks are stable it follows from Nyquists stability theorem that
the closed loop is stable.

Variations in Closed Loop Transfer Function

So far we have investigated the risk for instability. The effects of small
variation in process dynamics on the closed loop transfer function will now
be investigated. To do this we will analyze the system in Figure 9.2. The
transfer function from reference to output is given by

Gyr =
PCF

1 + PC
= T (9.18)

Compare with (9.11). The transfer function T which belongs to the Gang of
Four is called the complementary sensitivity function. Differentiating (9.18)
we get

dGyr

dP
=

CF

1 + PC
− PCFC

(1 + PC)2
=

CF

(1 + PC)2
= S

Gyr

P
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Hence
d logGyr

d logP
=
dGyr/Gyr

dP/P
= S (9.19)

The relative error in the closed loop transfer function thus equals the product
of the sensitivity function and the relative error in the process. This equation
is the reason for calling S the sensitivity function. The relative error in the
closed loop transfer function is thus small when the sensitivity is small. This
is one of the very useful properties of feedback. For example this property
was exploited by Black at Bell labs to build the feedback amplifiers that
made it possible to use telephones over large distances.

A small value of the sensitivity function thus means that disturbances are
attenuated and that the effect of process perturbations also are negligible.
A plot of the magnitude of the complementary sensitivity function as in
Figure 9.8 is a good way to determine the frequencies where model precision
is essential.

9.7 The Sensitivity Functions

We have seen that the sensitivity function S and the complementary sensi-
tivity function T tell much about the feedback loop. We have also seen from
Equations (9.5) and (9.19) that it is advantageous to have a small value of
the sensitivity function and it follows from (9.16) that a small value of the
complementary sensitivity allows large process uncertainty. Since

S(s) =
1

1 + P (s)C(s)
and T (s) =

P (s)C(s)

1 + P (s)C(s)
(9.20)

it follows that

S(s) + T (s) = 1 (9.21)

This means that S and T cannot be made small simultaneously. The loop
transfer function L is typically large for small values of s and it goes to zero
as s goes to infinity. This means that S is typically small for small s and
close to 1 for large. The complementary sensitivity function is close to 1 for
small s and it goes to 0 as s goes to infinity.

A basic problem is to investigate if S can be made small over a large
frequency range. We will start by investigating an example.

Example 9.3 (System that Admits Small Sensitivities). Consider a closed
loop system consisting of a first order process and a proportional controller.
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Let the loop transfer function

L(s) = P (s)C(s) =
k

s+ 1

where parameter k is the controller gain. The sensitivity function is

S(s) =
s+ 1

s+ 1 + k

and we have

|S(iω)| =

√

1 + ω2

1 + 2k + k2 + ω2

This implies that |S(iω)| < 1 for all finite frequencies and that the sensitivity
can be made arbitrary small for any finite frequency by making k sufficiently
large.

The system in Example 9.3 is unfortunately an exception. The key
feature of the system is that the Nyquist curve of the process lies in the
fourth quadrant. Systems whose Nyquist curves are in the first and fourth
quadrant are called positive real. For such systems the Nyquist curve never
enters the region shown in Figure 9.9 where the sensitivity is greater than
one.

For typical control systems there are unfortunately severe constraints on
the sensitivity function. Bode has shown that if the loop transfer has poles
pk in the right half plane and if it goes to zero faster than 1/s for large s
the sensitivity function satisfies the following integral

∫ ∞

0
log |S(iω)|dω =

∫ ∞

0
log

1

|1 + L(iω)|dω = π
∑

Re pk (9.22)

This equation shows that if the sensitivity function is made smaller for
some frequencies it must increase at other frequencies. This means that if
disturbance attenuation is improved in one frequency range it will be worse
in other. This is called the water bed effect.

Equation (9.22) implies that there are fundamental limitations to what
can be achieved by control and that control design can be viewed as a
redistribution of disturbance attenuation over different frequencies.

For a loop transfer function without poles in the right half plane (9.22)
reduces to

∫ ∞

0
log |S(iω)|dω = 0

This formula can be given a nice geometric interpretation as shown in Fig-
ure 9.13 which shows log |S(iω)| as a function of ω. The area over the
horizontal axis must be equal to the area under the axis.Ä
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Figure 9.14: Contour used to prove Bode’s theorem.

Derivation of Bode’s Formula

This is a technical section which requires some knowledge of the theory of
complex variables, in particular contour integration. Assume that the loop
transfer function has distinct poles at s = pk in the right half plane and that
L(s) goes to zero faster than 1/s for large values of s.

Consider the integral of the logarithm of the sensitivity function S(s) =
1/(1+L(s)) over the contour shown in Figure 9.14. The contour encloses the
right half plane except the points s = pk where the loop transfer function
L(s) = P (s)C(s) has poles and the sensitivity function S(s) has zeros. The
direction of the contour is counter clockwise.

The integral of the log of the sensitivity function around this contour is
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given by
∫

Γ
log(S(s))ds =

∫ −iω

iω
log(S(s))ds+

∫

R
log(S(s))ds+

∑

k

∫

γ
log(S(s))ds

= I1 + I2 + I3 = 0

where R is a large semi circle on the right and γk is the contour starting on
the imaginary axis at s = Im pk and a small circle enclosing the pole pk. The
integral is zero because the function logS(s) is regular inside the contour.
We have

I1 = −i
∫ iR

−iR
log(S(iω))dω = −2i

∫ iR

0
log(|S(iω)|)dω

because the real part of logS(iω) is an even function and the imaginary part
is an odd function. Furthermore we have

I2 =

∫

R
log(S(s))ds =

∫

R
log(1 + L(s))ds ≈

∫

R
L(s)ds

Since L(s) goes to zero faster than 1/s for large s the integral goes to
zero when the radius of the circle goes to infinity. Next we consider the
integral I3, for this purpose we split the contour into three parts X+, γ and
X− as indicated in Figure 9.14. We have

∫

γ
logS(s)ds =

∫

X+
logS(s)ds+

∫

γ
logS(s)ds+

∫

X−
logS(s)ds

The contour γ is a small circle with radius r around the pole pk. The
magnitude of the integrand is of the order log r and the length of the path is
2πr. The integral thus goes to zero as the radius r goes to zero. Furthermore
we have

∫

X+

logS(s)ds+

∫

X−

logS(s)ds

=

∫

X+

(

logS(s) − logS(s− 2πi
)

ds = 2πpk

Letting the small circles go to zero and the large circle go to infinity and
adding the contributions from all right half plane poles pk gives

I1 + I2 + I3 = −2i

∫ iR

0
log |S(iω)|dω +

∑

k

2πpk = 0.

which is Bode’s formula (9.22).
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Figure 9.15: Gain curves of the sensitivity function (left) and the comple-
mentary sensitivity function (right). The straight line approximations are
shown with dashed lines.

9.8 Implications for Design

We will now return to the system discussed in Section 9.2. The process and
controller transfer functions are

P (s) =
s+ 1.25

s(s+ 1)
, C(s) =

−5120s+ 2000

s2 + 17s+ 5300

The sensitivity functions are

S(s) =
s(s+ 1.25)(s2 + 17s+ 5300

(s2 + 6s+ 25)(s2 + 12s+ 100)

T (s) =
(s+ 1)(−5120s+ 2000)

(s2 + 6s+ 25)(s2 + 12s+ 100)

The gain curves for the sensitivity functions are shown in Figure 9.15. The
figures show that the maximum sensitivities are very large, Ms = 55 and
Mt = 54.

The sensitivity curves also give insights. Consider the break points
which are clearly seen from the straight line approximation. The large
peak in the complementary sensitivity is caused by the controller zero at
s = −5300/2000 and process zero at s = −1.25 the gain increases and it
does not decay until the dominant process poles at ω = 5 and ω = 10. The
peak can clearly be avoided by requiring that the closed loop system has a
pole close to the process zero. Keeping the same state feedback and choosing
observer poles at s = −1.25 and s = −10 instead of s = −6 ± 10i gives the
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The loop transfer function is

L(s) =
(s+ 1.25)(70s+ 250)

s(s+ 1)(s2 + 16.25s+ 18.74)

Figure 9.16 shows the Bode and Nyquist plots of the loop transfer function.
The gain and phase margins are gm = ∞, ϕm = 47.3 and the maximum
sensitivities are Ms = 1.39 and Mt = 1.36. The system thus has very good
robustness properties.
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Figure 9.16: Bode (left) and Nyquist (right) plots of the loop transfer func-
tion (??).

observer gain the observer gain is

K =
[

2.25 10.25
]T
,

The controller transfer function is

C(s) =
70s+ 250

s2 + 16.25s+ 18.74

A comparison with Figure 9.16 shows that changing the observer poles from
−6±8i to −1.25 and −10 has a drastic impact of the robustness of the closed
loop system. The important thing is to introduce a closed loop pole close to
the slow open loop zero at s = −1.25. Another conclusion is that the open
loop dynamics must be taken into account when choosing the closed loop
poles. We will now use the ideas of the analysis to arrive at general design
rules.



9.8. IMPLICATIONS FOR DESIGN 253

Design Rules

Let the transfer functions of the process and the controller be

P (s) =
np(s)

dp(s)

C(s) =
nc(s)

dc(s)

where np(s), nc(s), dp(s) and dc(s) are polynomials. The sensitivity func-
tions then becomes

S(s) =
dp(s)dc(s)

dp(s)dc(s) + np(s)dp(s)

T (s) =
np(s)nc(s)

dp(s)dc(s) + np(s)dp(s)

Let wgc be the desired gain crossover frequency. Assume that the process
has zeros which are slower than ωgc. The complementary sensitivity function
is one for low frequencies and it start to increase for frequencies close to the
process zeros unless there is a closed loop pole in the neighborhood. To
avoid large values of the complementary sensitivity function we find that
the closed loop system should have poles close to the slow zeros.

Now consider process poles that are faster than the desired gain crossover
frequency. The sensitivity function is one for high frequencies. Moving from
high to low frequencies the sensitivity function increases at the fast process
poles. Large peaks can be obtained unless there are process poles close to
the closed loop poles. To avoid large peaks in the sensitivity the closed loop
system should be have poles close that matches the fast process poles. We
thus obtain the simple rules that slow process zeros should be matched slow
closed loop poles and fast process poles should be matched by fast process
poles. The rule are illustrated with an additional example.

Example 9.4 (To Cancel or not to Cancel). Consider PI control of a first
order system where the process and the controller have the transfer functions

P (s) =
b

s+ a

C(s) = k +
ki

s

The loop transfer function is

L(s) =
b(ks+ ki)

s(s+ a)
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Figure 9.17: Magnitude curve for Bode plots of the sensitivity function S
(above) and the complementary sensitivity function T (below) for ζ = 0.7,
a = 1 and ω0/a = 0.1 (dashed), 1 (solid) and 10 (dotted).

The closed loop characteristic polynomial is

s(s+ a) + b(ks+ ki) = s62 + (a+ bk)s+ ki

Let the desired closed loop characteristic polynomial be

s2 + 2ζω0s+ ω2
0 (9.23)

Matching this with we find that the controller gains are

s2 + 2ζω0s+ ω2
0 (9.24)

where ζ ≤ 1, we find that the controller parameters are given by

k =
2ζω0 − a

b

ki =
ω2

0

b

Notice that the controller has a zero in the right half plane if 2ζω0 < a, an
indication that the system has bad properties. The sensitivity functions we
get

S(s) =
s(s+ a)

s2 + 2ζω0s+ ω2
0

T (s) =
(2ζω0 − a)s+ ω2

0

s2 + 2ζω0s+ ω2
0

Figure 9.17 shows clearly that the sensitivities are small for designs with
ω0 > a, but high for designs with ω0 > a. If we desire a system with slower
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response the design rule above tells that the closed loop system should have
a pole matching the fast process pole. This can be achieved by choosing the
closed loop characteristic polynomial as

dcl = (s+ a)(s+ ω0)

The controller gains then becomes

k =
ω0

b

ki =
aω0

l

and the loop transfer function becomes

L(s) =
bk

s

Notice that the fast process pole is canceled. The sensitivity functions are

S(s) =
s

s+ bk

T (s) =
bk

s+ bk

The maximum sensitivities are less than one for all frequencies. Notice that
this design is not sensible if a < ω0 because the controller then cancels a
slow pole and the response to load disturbances will be poor as illustrated
in Example 9.1.

9.9 When are Two Processes Similar?

A fundamental issue is to determine when two processes are close. This
seemingly innocent problem is not as simple as it may appear. When dis-
cussing the effects of uncertainty of the process on stability in Section 9.6
we used the quantity

δ(P1, P2) = max
ω

|P1(iω) − P2(iω)| (9.25)

as a measure of closeness of two processes. In addition the transfer functions
P1 and P2 were assumed to be stable. This means conceptually that we
compare the outputs of two systems subject to the same input. This may
appear as a natural way to compare two systems but there are complications.
Two systems that have similar open loop behaviors may have drastically
different behavior in closed loop and systems with very different open loop
behavior may have similar closed loop behavior. We illustrate this by two
examples.
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Figure 9.18: Step responses for systems with the transfer functions P1(s) =
100/(s+ 1) (dashed) and P2(s) = 160000/((s+ 1)(s+ 40)2) (full).

Example 9.5 (Similar in Open Loop but Different in Closed Loop). Systems
with the transfer functions

P1(s) =
100

s+ 1
, P2(s) =

100a2

(s+ 1)(s+ a)2

have very similar open loop responses for large values of a. This is illustrated
in Figure 9.18 which shows the step responses of for a = 40. The differences
between the step responses are barely noticeable in the figure. The transfer
functions from reference values to output for closed loop systems obtained
with error feedback with C = 1 are

T1 =
100

s+ 101
, T2 =

161600

(s+ 83.92)(s2 − 2.9254s+ 1925.5)

The closed loop systems are very different because the system T1 is stable
and T2 is unstable. Notice in Figure 9.18 that the Bode plots are very close
for low frequencies but different at high frequencies.

Example 9.6 (Different in Open Loop but Similar in Closed Loop). Systems
with the transfer functions

P1(s) =
100

s+ 1
, P2(s) =

100

s− 1

have very different open loop properties because one system is unstable and
the other is stable. The transfer functions from reference values to output
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for closed loop systems obtained with error feedback with C = 1 are

T1(s) =
100

s+ 101
T2(s) =

100

s+ 99

which are very close.

These examples show clearly that to compare two systems by investigat-
ing their open loop properties may be strongly misleading from the point of
view of feedback control. Inspired by the examples we will instead compare
the properties of the closed loop systems obtained when two processes P1

and P2 are controlled by the same controller C. To do this it will be assumed
that the closed loop systems obtained are stable. The difference between the
closed loop transfer functions is

δ(P1, P2) =
∣

∣

∣

P1C

1 + P1C
− P2C

1 + P2C

∣

∣

∣ =
∣

∣

∣

(P1 − P2)C

(1 + P1C)(1 + P2C)

∣

∣

∣ (9.26)

This is a natural way to express the closeness of the systems P1 and P2,
when they are controlled by C. It can be verified that δ is a proper norm
in the mathematical sense. There is one difficulty from a practical point of
view because the norm depends on the feedback C. The norm has some
interesting properties.

Assume that the controller C has high gain at low frequencies. For low
frequencies we have

δ(P1, P2) ≈
P1 − P2

P1P2C

If C is large it means that δ can be small even if the difference P1 − P2 is
large. For frequencies where the maximum sensitivity is large we have

δ(P1, P2) ≈Ms1Ms2|C(P1 − P2)|

For frequencies where P1 and P2 have small gains, typically for high fre-
quencies, we have

δ(P1, P2) ≈ |C(P1 − P2)|

This equation shows clearly the disadvantage of having controllers with large
gain at high frequencies. The sensitivity to modeling error for high frequen-
cies can thus be reduced substantially by a controller whose gain goes to
zero rapidly for high frequencies. This has been known empirically for a
long time and it is called high frequency roll off.
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9.10 Specifications

Having understood the fundamental properties of the basic feedback loop
we will now quantify the requirements on a typical control system. Control
problems are rich and there are many factors that have to be taken into
account.

• Load disturbance attenuation

• Measurement noise response

• Robustness to process uncertainties

• Response to command signals

The emphasis on the different factors depend on the particular problem.
Robustness is important for all applications. Command signal following is
the major issue in motion control, where it is desired that the system follows
commanded trajectories. . This is called the servo problem. The typical
process control problem is to keep the process variable close to the reference
signal, which is changed only when production is altered. This is called
the regulation problem. Attenuation of load disturbances is therefore the
key issue in process control. There are also situations where the purpose
of control is not to keep the process variables at specified values. Control
buffers is a typical example. The reason for using buffers is to smooth flow
variations. A good strategy is to apply control only when there is a risk that
buffers tend to be empty or full.

An advantage with a structure having two degrees of freedom, or set-
point weighting, is that the problem of setpoint response can be decoupled
from the response to load disturbances and measurement noise. The design
procedure can then be divided into two independent steps.

• First design the feedback controller C that reduces the effects of load
disturbances and the sensitivity to process variations without intro-
ducing too much measurement noise into the system.

• Then design the feedforward F to give the desired response to set-
points.

We will now discuss how specifications can be expressed in terms properties
of the transfer functions (9.12).

The linear behavior of the system is completely determined by six trans-
fer functions (9.11), the Gang of Six. Neglecting setpoint response it is
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Figure 9.19: The error due to a unit step load disturbance some features used
to characterize attenuation of load disturbances. The dashed curve show the
open-loop error. The process transfer is P (s) = (s+ 1)−4 is controlled by a
PI controller having parameters k = 1 and ki = 0.4 function is

sufficient to consider four transfer functions (9.12), the Gang of Four. Spec-
ifications can be expressed in terms of these transfer functions. It is common
practice to characterize the transfer functions by a few features.

Features of Time Responses

Many criteria are related to time responses, for example the step response
to setpoint changes or the step response to load disturbances. It is common
to use some feature of the error typically extrema, asymptotes, areas etc.
The maximum error em is defined as

emax = max
0≤t<∞

|e(t)|

Tmax = arg max |e(t)|.
(9.27)

The time Tmax where the maximum occurs is a measure of the response time
of the system. An example is given in Figure 9.19 which shows the output
for a step in the load disturbance. The closed loop system has ωms = 0.559,
emax = 0.59 and Tmax = 5.15.

Other criteria are the integrated absolute error (IAE)

IAE =

∫ ∞

0
|e(t)|dt (9.28)

the integrated error (IE)

IE =

∫ ∞

0
e(t)dt. (9.29)
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The criteria IE and IAE are the same if the error does not change sign.
Notice that IE can be very small even if the error is not. For IE to be
relevant it is necessary to add conditions that ensure that the error is not
too oscillatory. The criterion IE is a natural choice for control of quality
variables for a process where the product is sent to a mixing tank. The
criterion may be strongly misleading, however, in other situations. It will
be zero for an oscillatory system with no damping.

There are many other criteria, for example the time multiplied absolute
error defined by

ITNAE =

∫ ∞

0
tn|e(t)|dt. (9.30)

The integrated squared error (ISE) is defined as

ISE =

∫ ∞

0
e(t)2dt. (9.31)

There are other criteria that take account of both input and output signals
for example the quadratic criterion

QE =

∫ ∞

0
(e2(t) + ρu2(t))dt. (9.32)

where ρ is a weighting factor. The criteria IE and QE can easily be computed
analytically, simulations are however required to determine IAE.

Response to Command Signals

Classical specifications were strongly focused on the response of the output
to step changes in the command signal. Many specifications were developed
for that response, for example rise time, settling time, decay ratio, overshoot,
and steady-state offset for step changes in setpoint. These quantities are
defined as follows, see Figure 9.20.

• The rise time Tr is defined either as the inverse of the largest slope of
the step response or the time it takes for the step response to change
from 10% to 90% of its steady state value.

• The settling time Ts is the time it takes before the step response re-
mains within p percent of its steady state value. The values p = 1, 2
and 5 percent of the steady state value are commonly used.
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Figure 9.20: Specifications on command signal following based on the time
response to a unit step in the setpoint. The upper curve shows the response
of the output and the lower curve shows the corresponding control signal.

• The decay ratio d is the ratio between two consecutive maxima of the
error for a step change in setpoint or load. The value d = 1/4, which is
called quarter amplitude damping, has been used traditionally. This
value is, however, normally too high as will be shown later.

• The overshoot o is the ratio between the difference between the first
peak and the steady state value and the steady state value of the step
response. It is often given in%. In industrial control applications it
is common to specify an overshoot of 8%–10%. In many situations
it is desirable, however, to have an over-damped response with no
overshoot.

• The steady-state error ess = ysp − y0 is the steady state control error
e. This is always zero for a controller with integral action.

Actuators may have rate limitations which means that step changes in the
control signal will not appear instantaneously. In motion control systems it
is often more relevant to consider responses to ramp signals instead of step
signals.
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Features of Frequency Responses

Specifications can also be related to frequency responses. Since specifications
were originally focused on setpoint response it was natural to consider the
transfer function from setpoint to output. A typical gain curve for this
response is shown in Figure 9.21. It is natural to require that the steady
state gain is one. Typical specifications are then.

• The resonance peak Mp is the largest value of the frequency response.

• The peak frequency ωp is the frequency where the maximum occurs.

• The bandwidth ωb is the frequency where the gain has decreased to
1/
√

2.

For a system with error feedback the transfer function from setpoint to
output is equal to the complementary transfer function and we have Mp =
Mt.

Specifications can also be related to the loop transfer function. Useful
features that have been discussed previously are:

• Gain crossover frequency ωgc.

• Gain margin gm.

• Phase margin ϕm.

• Maximum sensitivity Ms.

• Frequency where the sensitivity function has its maximum ωms.

• Sensitivity crossover frequency ωsc.
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• Maximum complementary sensitivity Mt.

• Frequency where the complementary sensitivity function has its max-
imum ωms.

Another set of specifications is based on a Taylor series expansion of the
transfer function Ged(s) from a disturbance to the error

Ged(s) = e0 + e1s+ e2s
2 + · · · .

The numbers ei are called error coefficients. The first coefficient that is
not zero is of particular interest. Assume for example that the first non-
vanishing error coefficient is e2. It means that constant disturbance and
linearly increasing disturbances do not give any steady state errors and that
the jerk disturbance d(t) = kt2 gives a constant steady state error ke2.

Relations between Time and Frequency Domain Features

There are approximate relations between specifications in the time and fre-
quency domain. Let G(s) be the transfer function from setpoint to output.
In the time domain the response speed can be characterized by the rise
time Tr, the average residence time Tar or the settling time Ts. In the fre-
quency domain the response time can be characterized by the closed loop
bandwidth ωb, the gain crossover frequency ωgc, the sensitivity frequency
ωms. The product of bandwidth and rise time is approximately constant
Trωb ≈ 2. The overshoot of the step response o is related to the peak Mp

of the frequency response in the sense that a larger peak normally implies
a lager oveshoot. Unfortunately there are no simple relation because the
overshoot also depends on how quickly the frequency response decays. For
Mp < 1.2 the overshoot o in the step response is often close to Mp − 1. For
larger values of Mp the overshoot is typically less than Mp − 1. These rela-
tions do not hold for all systems, there are systems with Mp = 1 that have
a positive overshoot. These systems have a transfer functions that decay
rapidly around the bandwidth. To avoid overshoots in systems with error
feedback it is advisable to require that the maximum of the complementary
sensitivity function is small, say Mt = 1.1 − 1.2.

Response to Load Disturbances

The sensitivity function (9.20) shows how feedback influences disturbances.
Disturbances with frequencies that are lower than the sensitivity crossover
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frequency ωsc are attenuated by feedback and those with ω > ωsc are am-
plified by feedback. The largest amplification is the maximum sensitivity
Ms.

Consider the system in Figure 9.2. The transfer function from load
disturbance d to process variable is

Gxd =
P

1 + PC
= PS =

T

C
. (9.33)

Since load disturbances typically have low frequencies it is natural that the
criterion emphasizes the behavior of the transfer function at low frequencies.
Filtering of the measurement signal has only marginal effect on the attenua-
tion of load disturbances because the filter only attenuates high frequencies.
For a system with P (0) 6= 0 and a controller with integral action control
the controller gain goes to infinity for small frequencies and we have the
following approximation for small s

Gxd =
T

C
≈ 1

C
≈ s

ki
. (9.34)

Since load disturbances typically have low frequencies the integral gain ki

is a good measure of load disturbance rejection for systems where the con-
troller has integral action. Figure 9.22 which gives the gain curve for a
typical case shows that the approximation is very good for low frequencies.
transfer functions. Measurement noise, which typically has high frequen-
cies, generates rapid variations in the control variable which are detrimental
because they cause wear in valves and motors and they can even saturate
the actuator. It is important to keep the variations in the control signal at
reasonable levels. A typical requirement is that the variations are only a
fraction of the span of the control signal. The variations can be influenced
by filtering and by proper design of the high frequency properties of the
controller.

The effects of measurement noise are captured by the transfer function
from measurement noise to the control signal

Gun =
C

1 + PC
= CS =

T

P
. (9.35)

Figure 9.22 shows the gain curve of Gun for a typical system. For low
frequencies the transfer function the sensitivity function equals 1 and (9.35)
can be approximated by 1/P (s). For high frequencies is is approximated as
Gun ≈ C(s).
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Figure 9.22: Gains of the transfer functions Gxd and Gun for PID control
(k = 2.235, Ti = 3.02, Ti = 0.756 and Tf = Td/5) of the process P =
(s + 1)−4. The the gain of the transfer functions P (s), C(s), 1/C(s) are
shown with dashed lines and s/ki with dash-dotted lines.

A simple measure of the effect of measurement noise is the high frequency
gain of the transfer function Gun

Mun = max
ω

|Gun(iω)|. (9.36)

A more accurate measure is the standard deviation of the control signal. If
the power spectrum of measurement noise is ϕn(ω), the standard deviation
of the control signal is

σ2
u =

∫ ∞

−∞
|Gun(iω)|2φn(ω)dω. (9.37)

Tradeoffs

There are many tradeoffs in control design, one is between load disturbance
rejection and measurement noise injection. This is illustrated in Figure 9.23
where a process with the transfer function P (s) = 1/(s + 1)4 is controlled
with PI (k = 0.5 and Ti = 2) and PID (k = 2.235, Ti = 3.02, Ti = 0.756 and
Tf = Td/5) controllers. The figure shows that the PID controller gives bet-
ter attenuation of load disturbances k=0.74 as compared with ki = 0.25 for
PI control. This is also illustrated in the time responses for load disturbances
where the maximum error is much smaller emax = 0.38 for PID control and
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Figure 9.23: Illustrates trade off between attenuation of load disturbances
and measurement noise injection. The figure on the left shows the gain
curves of the transfer functions Gxd(s) and Gun(s) and the curves on the
right shows the time responses to steps in the load disturbance. Results for
PID control are shown in full lines and for PI with dashed lines.

emax = 0.69 for PI control. Analyzing the control signals we find that the
benefit by PID control is primarily due to the fact that the controller reacts
faster to the disturbance. The penalty for the improved performance is that
the largest gain of the transfer function Gun is Mun = 11.2 for PID control
as compared to Mun = 1.2 for PI control.

Summary

Summarizing we find that the behavior of a closed loop system system can
be characterized by the following four parameters:

• Load disturbance attenuation is described by integral gain ki

• Measurement noise injection is described by the high frequency gain
Mun of the transfer function from measurement noise to control signal.

• Robustness to process variations is described by the maximum sensi-
tivities Ms and Mt
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For systems permitting a controller with two degrees of freedom the desired
response to command signal can be adjusted by feedforward. For systems
with error feedback the overshoot of the response to load disturbances can
be specified by Mt.

9.11 Further Reading

Bodes book, classical control, Doyle Francis Tannenbaum, Zhou and Doyle
Vinnicombe.

9.12 Exercises
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