
Chapter 8

PID Control

Based on a survey of over eleven thousand controllers in the refining, chemi-
cals and pulp and paper industries, 97% of regulatory controllers utilize PID
feedback.

Desborough Honeywell, 2000.

This chapter describes the PID controller which unquestionably the most
common way of solving practical control problem. Practical implementation
issues are also discussed particularly mechanisms for avoiding integrator
windup. Methods for automatic tuning of a PID controller are also dis-
cussed.

8.1 Introduction

The PID controller is by far the most common control algorithm. Most
practical feedback loops are based on PID control or some minor variations of
it. Many controllers do not even use derivative action. The PID controllers
appear in many different forms, as a stand-alone controllers, they can also be
part of a DDC (Direct Digital Control) package or a hierarchical distributed
process control system or they are built into embedded systems. Thousands
of instrument and control engineers worldwide are using such controllers in
their daily work. The PID algorithm can be approached from many different
directions. It can be viewed as a device that can be operated with a few
empirical rules, but it can also be approached analytically.

This chapter gives an introduction to PID control. The basic algorithm
and various representations are presented in detail. A description of the
properties of the controller in a closed loop based on intuitive arguments is
given. The phenomenon of reset windup, which occurs when a controller

201
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with integral action is connected to a process with a saturating actuator,
is discussed, including several methods to avoid it. Filters to reduce noise
influence and means to improve reference responses are also provided.

Implementation aspects of the PID controller are presented in Chap-
ter ??.

8.2 The PID Controller

The textbook version of the PID controller is

u(t) = ke(t) + ki

∫ t

0
e(τ)dτ + kd

de

dt
, (8.1)

where u is the control signal and e is the control error (e = r − y). The
reference value is also called the setpoint. The control signal is thus a sum
of three terms: the P-term (which is proportional to the error), the I-term
(which is proportional to the integral of the error), and the D-term (which
is proportional to the derivative of the error). The controller parameters are
proportional gain k, integral gain ki and derivative gain kd. The controller
can also be parameterized as

u(t) = k

(

e(t) +
1

Ti

t
∫

0

e(τ)dτ + Td
de(t)

dt

)

, (8.2)

where Ti is called integral time and Td derivative time. The proportional
part acts on the present value of the error, the integral represent and average
of past errors and the derivative can be interpreted as a prediction of future
errors based on linear extrapolation, see Figure 8.1.

Proportional Action

Figure 8.2 shows the response of the output to a unit step in the command
signal for a system with pure proportional control. The output never reaches
the steady state error. Let the process and the controller have transfer
functions P (s) and C(s). The transfer function from reference to output is

Gyr(s) =
P (s)C(s)

1 + P (s)C(s)
(8.3)

The steady state gain with proportional control C(s) = k is

Gyr(0) =
P (0)k

1 + P (0)k
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Figure 8.1: A PID controller takes control action based on past, present and
prediction of future control errors.

The steady state error for a unit step is thus 1/(1+kP (0). For the system in
Figure 8.2 with gains k = 1, 2 and 5 the steady state error is 0.5, 0.33 0.17.
The error decreases with increasing gain, but the system also becomes more
oscillatory. Notice in the figure that the initial value of the control signal
equals controller gain. To avoid having a steady state error the proportional
controller can be change to

u(t) = Ke(t) + ub. (8.4)

where ub is a bias or reset term which is adjusted to give the desired steady
state value.

Integral Action

Integral action guarantees that the process output agrees with the reference
in steady state. This can be shown as follows. Assume that the system is in
steady state with a constant control signal (u0) and a constant error e0 6= 0.
It follows from Equation (8.1) that

u0 = ke0 + kie0t.

The left hand side is constant but the right hand side is a function of t. We
thus have a contradiction and e0 must be zero. Notice that in this argument
the only assumption made is that there exist a steady state. Nothing specific
is said about the process, it can for example be nonlinear.
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Figure 8.2: Responses to step changes in the command signal for propor-
tional (left), PI (middle) and PID controllers (right). The process has the
transfer function P (s) = 1/(s + 1)3, the controller parameters are k = 1
(dashed), 2 and 5 (dash-dotted) for the P controller, k = 1, ki = 0 (dashed),
0.2, 0.5 and 1 (dash-dotted) for the PI controller and k = 2.5, ki = 1.5 and
kd = 0 (dashed), 1, 2, 3 and 4 (dash-dotted) for the PID controller.
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Figure 8.3: Implementation of integral action as automatic bias adjustment.

Another argument is that the transfer function of a controller with inte-
gral action has infinite gain at zero frequency (C(0) = ∞). It then follows
from (8.3) that Gyr(0) = 0. This argument requires however that the system
is linear.

Integral action can also be viewed as a method for generating the bias
term ub in the proportional controller (8.4) automatically. This is illustrated
in Figure 8.3, where the bias ub is generated by low pass filtering the output.
This implementation, called automatic reset, was one of the early inventions
of integral control. The transfer function of the system in Figure 8.3 is
obtained by loop tracing. Assuming exponential signals and tracing them
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around the loop gives

u = ke+
1

1 + sT
u.

Solving for u gives

u = k
1 + sT

sT
e =

(

k +
k

sT

)

,

which is the transfer function of a PI controller.

The properties of integral action are illustrated in Figure 8.2. The pro-
portional gain is constant, k = 1, and the integral gain is changed. The case
ki = 0 corresponds to pure proportional control, with a steady state error is
50%. The steady state error is removed when integral gain ki is increased.
The response creeps slowly towards the reference for small values of ki. The
approach is faster for larger integral gains but the system also becomes more
oscillatory.

Derivative Action

Figure 8.2 shows that derivative action can improve the stability of the the
closed-loop system. The input-output relation of a controller with propor-
tional and derivative action is

u(t) = ke(t) + kd
de

dt
= k

(

e(t) + Td
de

dt

)

= kep(t)

where Td = kd/d is the derivative time. The action of a controller with
proportional and derivative action can be interpreted as if the control is made
proportional to the predicted process output, where the prediction is made
by extrapolating the error Td time units into the future using the tangent
to the error curve (see Figure 8.1). Figure ?? illustrates the behaviour of a
system with a PID controller. The system is oscillatory when not derivative
action is used and it becomes more damped as derivative gain is increased.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has very high
gain for high frequency signals. This means that high frequency measure-
ment noise will generate large variations of the control signal. The effect of
measurement noise be reduced by replacing the term kds by

Da = − kds

1 + sTf
. (8.5)
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Figure 8.4: Implementation of the transfer function sT/(1 + sT ) which ap-
proximates derivative action.

This can be interpreted as an ideal derivative that is filtered using a first-
order system with the time constant Tf . For small s the transfer function is
approximately Kds and for large s it is equal to kd/Tf . The approximation
acts as a derivative for low-frequency signals and as a constant gain for the
high frequency signals. The high-frequency gain is kd/Tf . The filtering time
is chosen as kd/k/N , with N in the range of 2 to 20. The transfer function
of a PID controller with a filtered derivative is

C(s) = K

(

1 +
1

sTi
+

sTd

1 + sTd/N

)

. (8.6)

The high-frequency gain of the controller is K(1 +N).
Instead of filtering just the derivative it is also possible to use an ideal

controller and filter the measured signal. The transfer function of such a
controller with the filter is then

C(s) = K

(

1 +
1

sTi
+ sTd

)

1

(1 + sTf )2
. (8.7)

where a second order filter is used.
An early implementation of derivative action is shown in Figure 8.4. In

this system the derivative is shown as the difference between the signal and
a filtered version of the signal. The transfer function for the system is

C(s) =
(

1 − 1

1 + sT

)

=
sT

1 + sT
U(s). (8.8)

The system thus has the transfer function G(s) = sT/(1 + sT ), which ap-
proximates a derivative for low frequencies. Notice that this implementation
gives filtering automatically.
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Set Point Weighting

The control system in (8.1) is called a system with error feedback because
the controller acts on the error, which is the difference between the reference
and the output. In the simulation of PID controllers in Figure 8.1 there is a
large initial peak of the control signal, which is caused by the derivative of
the reference signal. The peak can be avoided by modifying the controller
(8.1) to

u(t) = k
(

βr(t)− y(t)
)

+ki

∫ ∞

0

(

r(τ)− y(τ)
)

dτ +kd

(

γ
dr(t)

dt
− dy(t)

dt

)

(8.9)

In this controller proportional and derivative action only acts on a fractions
β and γ of the reference. Integral action has to act on the error to make
sure that the error goes to zero in steady state. The closed loop systems
obtained for different values of β and γ respond to load disturbances and
measurement noise in the same way. The response to reference signals is
be different because it depends on the values of β and γ, which are called
reference weights or setpoint weights.

Figure 8.5 illustrates the effects of set point weighting on the step re-
sponse. The figure shows clearly the effect of changing β. The overshoot for
reference changes is smallest for β = 0, which is the case where the refer-
ence is only introduced in the integral term, and increases with increasing
β. Parameter β it typically in the range of 0 to 1 and γ is normally zero to
avoid large transients in the control signal when the reference is changed.

The controller given by (8.9) is a special case of the general controller
with two degrees of freedom in Figure ??. The transfer functions are

C(s) = k +
ki

s
+ kds

F (s) =
γkds

2 + βks+ ki

kds2 + ks+ ki
.

8.3 Integrator Windup

Many aspects of a control system can be understood from linear models.
There are, however, some nonlinear phenomena that must be taken into ac-
count. There are typically limitations in the actuators: a motor has limited
speed, a valve cannot be more than fully opened or fully closed, etc. For
a control system with a wide range of operating conditions, it may happen
that the control variable reaches the actuator limits. When this happens
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Figure 8.5: Time and frequency responses for system with PI controller and
setpoint weighting. The curves on the left show responses in process output
y and control signal and the curves on the right show the gain curves for
the transfer functions Gyr(s) and Gur(s). The process transfer function is
P (s) = 1/s, the controller gains are k = 1.5 and ki = 1, and the setpoint
weights are β = 0 (dashed) 0.2, 0.5 and 1 (dash dotted).

the feedback loop is broken and the system runs in open loop because the
actuator will remain at its limit independently of the process output as long
as the actuator remains saturated. For a controller with integral action the
integral term may become very large. When this happens the error must
change sign for a long period before the integrator winds down. The conse-
quence is that there may be large transients. This is colloquially referred to
as integrator wind up

The wind-up effect is illustrated in Figure 8.6, which shows control of
an integrating process with a PI controller. The initial reference signal is
so large that the actuator saturates at the high limit. The integral term
increases initially because the error is positive; it reaches its largest value
at time t = 10 when the error goes through zero. The output remains
saturated at this point because of the large value of the integral term. It
does not leave saturation until the error has been negative for a sufficiently
long time. Notice that the control signal bounces between its limits several
times. The net effect is a large overshoot and a damped oscillation where
the control signal flips from one extreme to the other as in relay oscillations.
The output finally comes so close to the reference that the actuator does
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Figure 8.6: Illustration of integrator windup. The plots show process output
y, reference r in the upper plot, control signal u in the middle plot, controller
output uo (full) and integral part I and control error e (dashed) in lower
part. (dash dotted).

not saturate and the system then behaves linearly and settles quickly.

There are many ways to avoid windup, one method is illustrated in
Figure 8.7. The system has an extra feedback path that is generated by
measuring the actual actuator output, or the output of a mathematical
model of the saturating actuator, and forming an error signal (es) as the
difference between the output of the controller (v) and the actuator output
(u). The signal es is fed to the input of the integrator through gain 1/Tt.
The signal es is zero when there is no saturation and the extra feedback
loop has no effect on the system. When the actuator saturates, the signal
es is different from zero. The normal feedback path around the process is
broken because the process input remains constant. The feedback around
the integrator will act and it attempts to drive es to zero. This implies that
controller output is kept close to the saturation limit and integral windup is
avoided. The rate at which the controller output is reset is governed by the
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Figure 8.7: PID controller with anti-windup.
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Figure 8.8: Controller with anti-windup applied to the system of Figure 8.6.
The plots show process output y, reference r in the upper plot, control
signal u in the middle plot, controller output uo (full) and integral part I
and control error e (dashed) in lower part. (dash dotted).
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feedback gain, 1/Tt, where the tracking time constant Tt can be interpreted
as the time constant, which determines how quickly the integral is reset. A
short long time constant gives a slow reset and a short time constant a short
reset time. Measurement error can cause an undesirable reset if the time
constant is too short. A reasonable compromise is to choose Tt as a fraction
of Ti for proportional control and as Tt =

√
TiTd for PID control.

Figure 8.8 shows what happens when a controller with anti-windup is
applied to the system simulated in Figure 8.6. The output of the integrator
is quickly reset to a value such that the controller output is at the saturation
limit, and the integral has a negative value during the initial phase when
the actuator is saturated. This behavior is drastically different from that in
Figure 8.6, where the integral was positive during the initial transient. Also
notice the drastic improvement in performance compared to the ordinary PI
controller used in Figure 8.6.

8.4 Tuning

There are many ways to tune a PID controller. Traditional control tech-
niques based on modeling and design can be used, but there are also special
methods for direct tuning based on simple process experiments. A few meth-
ods are described in this section.

PI Control of First Order Systems

The dynamics of many systems can be approximated by a first order system
with the transfer function

P (s) =
b

s+ a
.

The approximation is reasonable for systems where storage of mass, momen-
tum and energy can be captured by one state variable. Typical examples
are velocity of car on the road, control of velocity of rotating system, electric
systems where energy is essentially stored in one component, incompressible
fluid flow in a pipe, level control of a tank, pressure control in a gas tank,
temperature in a body with essentially uniform temperature distribution.

A PI controller with set point weighting is described by

C(s) = k +
ki

s

F (s) =
βkski

ks+ ki
,
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and the transfer function of the closed loop system from reference to output
is

Gyr(s) =
P (s)C(s)F (s)

1 + P (s)C(s)
=

b(βks+ ki)

s2 + (a+ bk)s+ bki
.

The closed loop system has the characteristic polynomial

s2 + (a+ bk)s+ bki.

Assuming that the desired characteristic polynomial is

s2 + 2ζω0s+ ω2
0, (8.10)

we find that the controller parameters are given by

k =
2ζω0 − a

b
=

2ζω0T − 1

K

ki =
ω2

0

b
=
ω2

0T

K
.

(8.11)

The parameter ω0 determines the response speed and ζ determines the
damping.

The same approach can be used to find the parameters of a PID controller
for a process with dynamics of second order.

Loop Shaping

Since a PI controller has two parameters it is possible to shape the loop
transfer function by specifying one point on the Nyquist curve. For example,
we can choose controller gains to give a specified phase margin at a given
crossover frequency ωgc. To be specific let the process transfer function be
P (s). The frequency response of the loop transfer function with PI control
is

L(iω) = P (iω)
(

k − i
ki

ω

)

=
(

a(ω) + ib(ω)
)

(

k − i
ki

ω

)

= a(ω)k +
b(ω)k

ω
+ i

(

b(ω)k − a(ω)ki

ω

)

,

where a(ω) = ReP (iω) = r(ω) cosϕ(ω) and b(ω) = ImP (iω) = r(ω) sinϕ(ω).
Requiring that the phase margin is ϕm we get

a(ωgc)k +
b(ωgc)ki

ωgc
= − cosϕm

b(ωgc)k −
a(ωgc)ki

ωgc
= − sinϕm
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Solving this equation gives the controller parameters

k = −a(ωgc) cosϕm + b(ωgc) sinϕm

a2(ωgc) + b2(ωgc)
= −cos (ϕ(ω) − ϕm)

r(ω)

ki =

(

a(ωgc) sinϕm − b(ωgc) cosϕm

)

ωgc

a2(ωgc) + b2(ωgc)
=

sin (ϕ(ω) + ϕm)

r(ω)
.

(8.12)

We have
argP (iωgc) + argC(iωgc) ≥ −π + ϕm.

since a PI controller has phase lag between 0 and π/2 we find that the gain
crossover frequency must be chosen so that

−π + ϕm ≤ argP (iωgc) ≤ −π/2 + ϕm (8.13)

It follows from(8.12) that integral gain is zero at the lower limit and pro-
portional gain is zero at the higher limit.

Figure 8.9 shows the Nyquist plots for the loop transfer function for
different ωgc for a system with the transfer function P (s) = 1/(s + 1)4.
With a phase margin ϕm = π/3 (8.13) becomes

0.13 = tanπ/24 < ωgc < tanπ/6 = 0.58

The lower limit correspond to a purely integrating controller and the upper
limit is a purely proportional controller.

In Section ?? it was shown that ki is a good measure for load disturbance
attenuation and that the stability margin ms = 1/Ms is a good robustness
measure. These measures are shown in Figure 8.9. The largest value ki =
0.30 is obtained for ωgc = 0.36, the largest stability margin sm = 0.48 is
obtained for ωgc = 0.18. Reasonable values of the gain crossover frequency
are between 0.18 and 0.36. For ωgc = 0.3 we get k = 0.71, ki = 0.29 and
sm = 0.67 and for ωgc = 0.36 we get k = 0.96, ki = 0.30 and sm = 0.55.

Ziegler-Nichols’ Tuning Methods

Two special methods for tuning of PID controllers developed by Ziegler
and Nichols in the 1940s are still commonly used. They are based on the
following idea: Make a simple experiment, extract some features of process
dynamics from the experimental data, and determine controller parameters
from the features.

One method is based on the open-loop step response, which is charac-
terized by two parameters a and Tdel, as shown in Figure 8.10. The step
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Figure 8.9: The left figure shows the loop transfer functions for PI con-
trollers gain crossover frequencies are ωgc = 0.13 (dashed), 0.3, 0.4, 0.5 (full)
and 0.58 (dash-dotted). The right figure shows controller gains k (full), ki

(dashed) and stability margin sm (dash-dotted) as functions of the phase
margin ωgc.

response is characterized by parameters a and Tdel which are the intercepts
of the steepest tangent of the step response with the coordinate axes. Pa-
rameter Tdelat is an approximation of the time delay of the system and a/Tdel

is the steepest slope of the step response. Notice that it is not necessary to
wait until steady state to find the parameters, it suffices to wait until the
response has had an inflection point. The controller parameters are given
in Table 8.1.

Another method is based on frequency response features was also de-
veloped by Ziegler and Nichols. Process data is obtained by connecting

Table 8.1: Controller parameters for the Ziegler-Nichols step response
method. Parameter Tp is an estimate of the period of damped oscillations
of the closed loop system.

Controller ak Ti/Tdel Td/Tdel Tp/Tdel

P 1 4
PI 0.9 3 5.7

PID 1.2 2 T /2 3.4
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the coordinate axes. The point where the tangent is steepest is marked with
a small circle.

Table 8.2: Controller parameters for the Ziegler-Nichols frequency response
method which gives controller parameters in terms of critical gain kc and
critical period Tc. Parameter Tp is an estimate of the period of damped
oscillations of the closed loop system.

Controller k/kc Ti/Tc Td/Tc Tp/Tu

P 0.5 1.0
PI 0.4 0.8 1.4

PID 0.6 0.5 0.125 0.85

a feedback loop with proportional control. The gain of the controller is
increased until the system reaches the stability boundary, the gain of the
controller kc and the period Tc of the oscillation is observed. The controller
parameters are then given by Table 8.2.

Improved Ziegler-Nichols Rules

There are two drawbacks with the Ziegler-Nichols rules, too little process
information is used and the closed loop systems obtained lack robustness.
Substantially better tuning is obtained by fitting the model

P (s) =
K

1 + sT
e−sTd (8.14)
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to the step response. A simple way to do this is illustrated in Figure ??. The
steady state gain of the process K is determined from the steady state value
of the step response. The time delay Tdel is determined from the intercept
of the stepest tangent to the step response as in Figure 8.10 and the time
T63 is the time where the output has reached 63% of its steady state value.
Parameter T is given by T = T63 − Tdel. Notice that the experiment takes
longer time than the experiment in Figure 8.10 because it is necessary to
way until the steady state has been reached.

The following tuning formulas have been obtained by tuning controllers
to a large set of processes typically encountered in process control

kK = min
(

0.4
T

L
, 0.25

)

kiKTdel = max
(

0.1
T

Tdel
, 0.5

)

.
(8.15)

Figure 8.12 illustrates the relations between the controller parameters and
the process parameters. The controller gain is normalized by multiplying it
either with the static process gain K or with the parameter a = KTdel/T .
Integral gain is normalized by multiplication withKTdel and integration time
by division by Tdel. The controller parameters in Figure 8.12 are plotted as
functions of the normalized time delay τ = Tdel/(Tdel + T ).

kK = min
(

0.4
T

L
, 0.25

)

kiKTdel = max
(

0.1
T

Tdel
, 0.5

)

.
(8.16)

Notice that the improved formulas typically give lower controller gain than
the Ziegler-Nichols method, but that integral gain is higher particularly for
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Figure 8.12: Proportional and integral gains for PI controllers given by the
Ziegler-Nichols rule (dotted), the improved rule given by (??) (dashed) and
controller designed for known transfer functions (◦).

systems with dynamics that is delay dominated. The figure also shows that
significant improvements are obtained by characterizing dynamics by three
parameters.

There are also improved tuning formulas for the frequency response
method. In this case it is convenient to characterize the process by crit-
ical gain kc, critical period Tc and static process gain K. One improved
formula that is applicable for kcK > 0.2 is

k = 0.25kc

ki =
0.1kc(1 + 4kcK

Tc

(8.17)

Relay Feedback

The experiment in Ziegler-Nichols frequency response method gives the fre-
quency where the process has a phase lag of 180◦ and the gain of the process
transfer function at that frequency. Another way to obtain this information
is to connect the process in a feedback loop with a relay as shown in Fig-
ure 8.13. This has been used to develop methods for automatic tuning of
PID controllers. For many systems there will then be an oscillation, as
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Figure 8.14: Process output y (solid) and relay output u (dashed) for a
system under relay feedback. Notice that the signals are out of phase. The
process has the transfer function P (s) = (s+ 1)−4.

shown in Figure 8.14, where the control signal is a square wave and the pro-
cess output is close to a sinusoid. Notice that the process input and output
have opposite phase and that a stable oscillation is established quickly.

To explain how the system works, assume that the relay output is ex-
panded in a Fourier series and that the process attenuates higher harmonics
effectively. It is then sufficient to consider only the first harmonic component
of the input. The input and the output then have opposite phase, which
means that the frequency of the oscillation ω180 is such that the process
has a phase lag of 180◦. If d is the relay amplitude, the first harmonic of
the square wave input has amplitude 4d/π. Let a be the amplitude of the
process output. The process gain at ω180 is then given by

K180 =
πa

4d
. (8.18)

Notice that the relay experiment is easily automated. Since the amplitude of
the oscillation is proportional to the relay output, it is easy to control it by
adjusting the relay output. Notice in Figure 8.14 that a stable oscillation is
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Figure 8.15: PID controller with automatic tuning.

established very quickly. The amplitude and the period can be determined
after about 20 s only, in spite of the fact that the system is started so far
from the equilibrium that it takes about 8 s to reach the correct level. The
average residence time of the system is 12 s, which means that it would take
about 40 s for a step response to reach steady state.

The idea of relay feedback has been used to implement PID controller
with automatic tuning. An example of such a controller is shown in Fig-
ure 8.15. For this controller tuning is accomplished simply by pushing a
button which activates relay feedback. The relay amplitude is adjusted
automatically not to perturb the process too much and the controller auto-
matically reverts to PID mode as soon as the tuning is accomplished.

8.5 Computer Control

In this section we will describe how a PID controller may be implemented
using a digital computer. More material on implementation is given in
Chapter 10. Most controllers are implemented in computers. The computer
typically operates periodically, signals from the sensors are sampled and con-
verted to digital form by the AD converter, the control signal is computed,
converted to analog form for the actuators. The sequence of operation is as
follows:
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1. Wait for clock interrupt

2. Read analog input from sensor

3. Compute control signal

4. Set analog output to the actuator

5. Update controller variables

6. Go to 1

Notice that an analog output is done as soon as the output is available. The
time delay is minimized by making the calculations in Step 3 as short as
possible and to delay all updates until the analog output is commanded.

Discretization

As an illustration we consider the PID controller in Figure 8.7 which has a fil-
tered derivative, set point weighting and protection against integral windup.
The controller is a continuous time dynamical system. To implement it us-
ing a computer the continuous time system has to be approximated by a
discrete time system.

The signal v is the sum of the proportional, integral and derivative terms

v(t) = P (t) + I(t) +D(t) (8.19)

and the controller output is u(t) = sat(v(t)) where sat is the saturation
function that models the actuator. The proportional term is

P = k(βysp − y)

This term is implemented simply by replacing the continuous variables with
their sampled versions. Hence,

P (tk) = k (βyr(tk) − y(tk)) (8.20)

where {tk} denotes the sampling instants, i.e., the times when the computer
reads the analog input. The integral term is

I(t) = ki

t
∫

0

e(s)ds+
1

Tt

(

sat(v) − v)
)
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Approximating the integral by a sum gives

I(tk+1) = I(tk) + kih e(tk) +
h

Tt

(

sat(v) − v)
)

(8.21)

The derivative term D is given by the differential equation

Tf
dD

dt
+D = −kdy

Approximating this equation with a backward difference we find

Tf
D(tk) −D(tk−1)

h
+D(tk) = −kd

y(tk) − y(tk−1)

h

This can be rewritten as

D(tk) =
Tf

Tf + h
D(tk−1) −

kd

Tf + h
(y(tk) − y(tk−1)) (8.22)

The advantage by using a backward difference is that the parameter Tf/(Tf+
h) is nonnegative and less than one for all h > 0, which guarantees that the
difference equation is stable.

Computer Code

Reorganizing Equations (8.19), (8.20), (8.21) and (8.22) the PID controller
can be described by the following pseudo code.

"Precompute controller coefficients

bi=ki*h

ad=Tf/(Tf+h)

bd=kd/(Tf+h)

br=h/Tt

"Control algorithm - main loop

r=adin(ch1) "read setpoint from ch1

y=adin(ch2) "read process variable from ch2

P=K*(b*r-y) "compute proportional part

D=ad*D-bd*(y-yold) "update derivative part

v=P+I+D "compute temporary output

u=sat(v,ulow,uhigh) "simulate actuator saturation

daout(ch1) "set analog output ch1

I=I+bi*(r-y)+br*(u-v) "update integral

yold=y "update old process output
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Precomputation of the coefficients bi, ad, bd and br saves computer time
in the main loop. These calculations have to be done only when controller
parameters are changed. The main program must be called once every
sampling period. The program has three states: yold, I, and D. One state
variable can be eliminated at the cost of a less readable code. Notice that
the code includes derivation of the process output only, proportional action
on part of the error only (b 6= 1), the last term in the updating of the integral
gives protection against windup.

8.6 Further Reading

Ziegler-Nichols original paper. Some paper from industry (Honeywell) that
describes industrial use. Bialkowsky?. A comprehensive presentation of
PID control is given in [?]. Overviews of industrial use of adaptive control
is found in [] and [].




