
Chapter 7

Loop Analysis

Quotation

Authors, citation.

This chapter describes how stability and robustness can be determined
by investigating how sinusoidal signals propagate around the feedback loop.
The Nyquist stability theorem is a key result which gives a new way to
analyze stability. It also make it possible to introduce measures degrees of
stability. Another important idea, due to Bode, makes it possible to separate
linear dynamical systems into two classes, minimum phase systems that are
easy to control and non-minimum phase systems that are difficult to control.

7.1 Introduction

The basic idea of loop analysis is to trace how a sinusoidal signal propagates
in the feedback loop. Stability can be explored by investigating if the signal
grows or decays when passes around the feedback loop. This is easy to do
because the transmission of sinusoidal signals through a dynamical system
is characterized by the frequency response of the system. The key result
is the Nyquist stability theorem, which is important for several reasons.
The concept of Lyapunov stability is binary, a system is either stable or
unstable. From an engineering point of view it is very useful to have a
notion of degrees of stability. Stability margins can be defined based on
properties of the Nyquist curve. The Nyquist theorem also indicates how
an unstable system should be changed to make it stable.
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Figure 7.1: Block diagram of a simple feedback system.

7.2 The Basic Idea

Consider the system in Figure 7.1. The traditional way to determine if the
closed loop system is stable is to investigate if the closed loop characteristic
polynomial has all its roots in the left half plane. If the process and the
controller have rational transfer functions P (s) = np(s)/dp(s) and C(s) =
nc(s)/dc(s) the closed loop system has the transfer function.

Gyr(s) =
P (s)C(s)

1 + P (s)C(s)
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)
,

and the characteristic polynomial is

dcl(s) = dp(s)dc(s) + np(s)nc(s)

This approach is straight forward but it gives little guidance for design. It is
not easy to tell how the controller should be modified to make an unstable
system stable.

Nyquist’s idea was to investigate conditions for maintaining oscillations
in a feedback loop. Consider the system in Figure 7.1. Introduce

L(s) = P (s)C(s)

which is called the loop transfer function. The system can then be repre-
sented by the block diagram in Figure 7.2. In this figure we have also cut
the loop open. We will first determine conditions for having a periodic os-
cillation in the loop. Assume that a sinusoid of frequency ω0 is injected at
point A. In steady state the signal at point B will also be a sinusoid with
the frequency ω0. It seems reasonable that an oscillation can be maintained
if the signal at B has the same amplitude and phase as the injected signal
because we could then connect A to B. Tracing signals around the loop we
find that the signals at A and B are identical if

L(iω0) = −1, (7.1)
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Figure 7.2: Block diagram of feedback system with the loop opened at AB.

which is the condition for maintaining an oscillation. To explore this further
we will introduce a graphical representation of the loop transfer function.

The Nyquist Plot

The frequency response of the loop transfer function can be represented by
plotting the complex number L(iω) as a function of ω. Such a plot is called
the Nyquist plot and the curve is called the Nyquist curve. An example of a
Nyquist plot is given in Figure 7.3. The magnitude |L(iω)| is called the loop
gain because it tells how much the signal is amplified as is passes around
the feedback loop and the angle argL(iω) is called the phase.

The condition for oscillation (7.1) implies that the Nyquist curve of the
loop transfer function goes through the point L = −1, which is called the
critical point.

Intuitively it seems reasonable that the system is stable if L(iωc)| < 1,
which means that the critical point -1 is on the left hand side of the Nyquist
curve as indicated in Figure 7.3. This means that the signal at point B will
have smaller amplitude than the injected signal. This is essentially true,
but there are several subtleties that requires a proper mathematics to clear
up. This will be done later. The precise statement is given by the Nyquist
stability theorem.

For loop transfer functions which do not have poles in the right half plane
the precise condition is that the complete Nyquist plot does not encircle the
critical point −1. The complete Nyquist plot is obtained by adding the plot
for negative frequencies shown in the dashed curve in Figure 7.4. This plot
is the mirror image of the Nyquist curve in the real axis. The following
procedure can be used to determine that there are no encirclements. Fix
a pin at the critical point orthogonal to the plane. Attach a rubber string
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Figure 7.3: Nyquist plot of the transfer function L(s) = 1.4e−s/(s + 1)2.
The gain and phase at the frequency ω are g = |L(iω)| and ϕ = argL(iω).

with one end in the pin and another to the Nyquist plot. Let the end of the
string attached to the Nyquist curve traverse the whole curve. There are
no encirclements if the cord does not wind up on the pin when the curve is
encircled.

One nice property of the Nyquist stability criterion is that it can be
applied to infinite dimensional systems as is illustrated by the following
example.

Example 7.1 (Heat Conduction). Consider a temperature control system
shown in where the process has the transfer function

P (s) = e−
√

s

and the controller is a proportional controller with gain k. The loop transfer
function is L(s) = ke−

√
s, its Nyquist plot for k = 1 is shown in Figure ??.

We have
P (iω) = e−

√
iω = e−

√
ω/2−i

√
ω/2.

Hence

logP (iω) = −
√
iω = −ω

√
2

2
− i

ω
√

2

2
,

We have

argL(iω) = −ω
√

2

2
.
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Figure 7.4: Nyquist plot of the transfer function L(s) = e−
√

s

The phase is −π for ω = ωc = π/
√

2 and the gain at that frequency is
ke−π = 0.0432k. The Nyquist plot for a system with gain k is obtained
simply by multiplying the Nyquist curve in the figure by k. The Nyquist
curve reaches the critical point L = −1 for k = eπ = 23.1. The complete
Nyquist curve in Figure 7.4 shows that the Nyquist curve does not encircle
the critical point if k < eπ which is the stability condition.

Ä

7.3 Nyquist’s Stability Theorem

We will now state and prove the Nyquist stability theorem. This will require
results from the theory of complex variables. Since precision is needed we
will also use a more mathematical style of presentation. The key result is
the following theorem about functions of complex variables.

Theorem 7.1 (Principle of Variation of the Argument). Let D be a closed
region in the complex plane and let Γ be the boundary of the region. Assume
the function f : C → C is analytic in D and on Γ except at a finite number
of poles and zeros, then

wn =
1

2π
∆Γ arg f(z) =

1

2πi

∫

Γ

f ′(z)

f(z)
dz = N − P

where N is the number of zeros and P the number of poles in D. Poles and
zeros of multiplicity m are counted m times.
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Proof. Assume that z = a is a zero of multiplicity m. In the neighborhood
of z = a we have

f(z) = (z − a)mg(z)

where the function g is analytic and different form zero. We have

f ′(z)

f(z)
=

m

z − a
+
g′(z)

g(z)

The second term is analytic at z = a. The function f ′/f thus has a single
pole at z = a with the residue m. The sum of the residues at the zeros of
the function is N . Similarly we find that the sum of the residues of the poles
of is −P . Furthermore we have

d

dz
log f(z) =

f ′(z)

f(z)

which implies that
∫

Γ

f ′(z)

f(z)
dz = ∆Γ log f(z)

where ∆Γ denotes the variation along the contour Γ. We have

log f(z) = log |f(z)| + i arg f(z)

Since the variation of |f(z)| around a closed contour is zero we have

∆Γ log f(z) = i∆Γ arg f(z)

and the theorem is proven.

Remark 7.1. The number ∆Γ arg f(z) is the variation of the argument of
the function f as the curve Γ is traversed in the positive direction.

Remark 7.2. The number wn is called the winding number. It equals the
number of encirclements of the critical point when the curve Γ is traversed
in the positive direction.

Remark 7.3. The theorem is useful to determine the number of poles and
zeros of an function of complex variables in a given region. To use the
result we must determine the winding number. One way to do this is to
investigate how the curve Γ is transformed under the map f . The variation
of the argument is the number of times the map of Γ winds around the
origin in the f -plane. This explains why the variation of the argument is
also called the winding number.
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Figure 7.5: The Nyquist contour Γ.Should be redrawn with poles on
imaginary axis as you have in your lecture notes.

Theorem 7.1 can be used to prove Nyquist’s stability theorem. To do
that we choose Γ as the Nyquist contour shown in Figure 7.5, which encloses
the right half plane. To construct the contour we start with part of the
imaginary axis −iR ≤ s ≤ iR, and a semicircle to the right with radius
R. If the function f has poles on the imaginary axis we introduce small
semicircles with radii r to the right of the poles as shown in the figure. The
Nyquist contour is obtained by letting R→ ∞ and r → 0.

The contour consists of a small half circle to the right of the origin, the
imaginary axis and a large half circle to the right with with the imaginary
axis as a diameter. To illustrate the contour we have shown it drawn with
a small radius r and a large radius R. The Nyquist curve is normally the
map of the positive imaginary axis. We call the contour Γ the full Nyquist
contour.

Consider a closed loop system with the loop transfer function L(s). The
closed loop poles are the zeros of the function

f(s) = 1 + L(s)

To find the number of zeros in the right half plane we investigate the winding
number of the function f(s) = 1 + L(s) as s moves along the Nyquist con-
tour Γ in the clockwise direction. The winding number can conveniently be
determined from the Nyquist plot. A direct application of the Theorem 7.1
gives the following result.
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Figure 7.6: The complete Nyquist curve for the loop transfer function L(s) =
k

s(s+1)2
. The curve is drawn for k < 2. The map of the positive imaginary

axis is shown in full lines, the map of the negative imaginary axis and the
small semi circle at the origin in dashed lines.

Theorem 7.2 (Nyquist’s Stability Theorem). Consider a closed loop system
with the loop transfer function L(s), which which has P poles in the region
enclosed by the Nyquist contour. Let the winding number of the function
f(s) = 1 + L(s) when s encircles the Nyquist contour Γ be wn. The closed
loop system then has wn + P poles in the right half plane.

There is a subtlety with the Nyquist plot when the loop transfer function
has poles on the imaginary axis because the gain of is infinite at the poles.
This means that the map of the small semicircles are infinitely large half
circles. When plotting Nyquist curves in Matlab correct results are obtained
for poles at the origin but Matlab does not deal with other poles on the
imaginary axis. We illustrate Nyquist’s theorem by an examples.

Example 7.2 (A Simple Case). Consider a closed loop system with the loop
transfer function

L(s) =
k

s(s+ 1)2

Figure 7.6 shows the image of the contour Γ under the map L. The loop
transfer function does not have any poles in the region enclosed by the
Nyquist contour. The Nyquist plot intersects the imaginary axis for ω = 1
the intersection is at −k/2. It follows from Figure 7.6 that the winding
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Figure 7.7: Complete Nyquist plot for the loop transfer function L(s) =
k

s(s−1)(s+5) . The curve on the right shows the region around the origin in
larger scale. The map of the positive imaginary axis is shown in full lines,
the map of the negative imaginary axis and the small semi circle at the
origin in dashed lines.

number is zero if k < 2 and 2 if k > 2. We can thus conclude that the closed
loop system is stable if k < 2 and that the closed loop system has two roots
in the right half plane if k > 2.

Next we will consider a case where the loop transfer function has a pole
inside the Nyquist contour.

Example 7.3 (Loop Transfer Function with RHP Pole). Consider a feedback
system with the loop transfer function

L(s) =
k

s(s− 1)(s+ 5)

This transfer function has a pole at s = 1 which is inside the Nyquist
contour. The complete Nyquist plot of the loop transfer function is shown in
Figure 7.7. Traversing the contour Γ in clockwise we find that the winding
number is wn = 1. It follows from the principle of the variation of the
argument that the closed loop system has wn +P = 2 poles in the right half
plane.

Conditional Stability

The normal situation is that an unstable system can be stabilized simply
by reducing the gain. There are however situations where a system can be
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Figure 7.8: Nyquist curve for the loop transfer function L(s) = 3(s+1)2

s(s+6)2
. The

plot on the right is an enlargement of the area around the origin of the plot
on the left.

stabilized increasing the gain. This was first encountered in the design of
feedback amplifiers who coined the term conditional stability. The problem
was actually a strong motivation for Nyquist to develop his theory. We will
illustrate by an example.

Example 7.4 (Conditional Stability). Consider a feedback system with the
loop transfer function

L(s) =
3(s+ 1)2

s(s+ 6)2
(7.2)

The Nyquist plot of the loop transfer function is shown in Figure 7.8. No-
tice that the Nyquist curve intersects the negative real axis twice. The first
intersection occurs at L = −12 for ω = 2 and the second at L = −4.5 for
ω = 3. The intuitive argument based on signal tracing around the loop in
Figure ?? is strongly misleading in this case. Injection of a sinusoid with
frequency 2 rad/s and amplitude 1 at A gives in steady state give an oscilla-
tion at B that is in phase with the input and has amplitude 12. Intuitively
it is seems unlikely that closing of the loop will result a stable system. It
follows from Nyquist’s stability criterion that the system is stable because
the critical point is to the left of the Nyquist curve when it is traversed for
increasing frequencies. It was actually systems of this type which motivated
much of the research that led Nyquist to develop his stability criterion.
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Figure 7.9: Nyquist plot of the loop transfer function L with gain margin
gm, phase margin ϕm and stability margin sm.

7.4 Stability Margins

In practice it is not enough that the system is stable. There must also be
some margins of stability. There are many ways to express this. Many of
the criteria are inspired by Nyquist’s stability criterion. The key idea is that
it is easy plot of the loop transfer function L(s). An increase of controller
gain simply expands the Nyquist plot radially. An increase of the phase of
the controller twists the Nyquist plot clockwise, see Figure 7.9. Let ω180

be the phase crossover frequency, which is the smallest frequency where the
phase of the loop transfer function L(s) is −180◦. The gain margin is

gm =
1

|L(iω180)|
. (7.3)

It tells how much the controller gain can be increased before reaching the
stability limit.

Let ωgc be the gain crossover frequency, the lowest frequency where the
loop transfer function L(s) has unit magnitude. The phase margin is

ϕm = π + argL(iωgc), (7.4)

the amount of phase lag required to reach the stability limit. The margins
have simple geometric interpretations in the Nyquist diagram of the loop
transfer function as is shown in Figure 7.9. A drawback with gain and phase
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margins is that it is necessary to give both of them in order to guarantee
that the Nyquist curve not is close to the critical point. One way to express
margins by a single number the stability margin sm, which is the shortest
distance from the Nyquist curve to the critical point. This number also
has other nice interpretations as will be discussed in Chapter 9. Reasonable
values of the margins: phase margin ϕm = 30◦−60◦, gain margin gm = 2−5,
and stability margin sm = 0.5−0.8. There are also other stability measures
such as the delay margin which is the smallest time delay required to make
the system unstable. For loop transfer functions that decay quickly the
delay margin is closely related to the phase margin but for systems where
the amplitude ratio of the loop transfer function has several peaks at high
frequencies the delay margin is a more relevant measure. A more detailed
discussion of robustness measures is given in Chapter 9.

Gain and phase margins can be determined from the Bode plot of the
loop transfer function. A change of controller gain translates the gain curve
vertically and it has no effect on the phase curve. To determine the gain
margin we first find the phase crossover frequency ω180 where the phase is
−180◦. The gain margin is the inverse of the gain at that frequency. To
determine the phase margin we first determine the gain crossover frequency
ωgc, i.e. the frequency where the gain of the loop transfer function is one.
The phase margin is the phase of the loop transfer function at that frequency
plus 180◦. Figure 7.10 illustrates how the margins are found in the Bode
plot of the loop transfer function. The stability margin cannot easily be
found from the Bode plot of the loop transfer function. There are however
other Bode plots that will give sm. This will be discussed in Chapter 9.

Example 7.5 (Pupillary light reflex dynamics). The pupillary light reflex dy-
namics was discussed in Example 6.9. Stark found a clever way to artificially
increase the loop gain by focusing a narrow beam at the boundary of the
pupil as shown in Figure 6.7. It was possible to increase the gain so much
that the pupil started to oscillate. The Bode plot in Figure 6.8 shows that
the phase crossover frequency is ωgc = 8 rad/s. This is in good agreement
with Stark’s experimental investigations which gave an average frequency of
1.35 Hz or 8.5 rad/s. indicates that oscillations will

7.5 Bode’s Relations

An analysis of the Bode plots reveals that there appears to be be a relation
between the gain curve and the phase curve. Consider e.g. the Bode plots
for the differentiator and the integrator in Figure 6.3. For the differentiator
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Figure 7.10: Finding gain and phase margins from the Bode plot of the loop
transfer function. The loop transfer function is L(s) = 1/(s(s + 1)(s + 2)),
the gain margin is gm = 6.0, the gain crossover frequency ωgc = 1.42., the
phase margin is φm = 53◦ at the phase crossover frequency ω = 0.44.

the slope is +1 and the phase is constant π/2 radians. For the integrator
the slope is -1 and the phase is −π/2. For the system G(s) = s + a the
amplitude curve has the slope 0 for small frequencies and the slope 1 for
high frequencies and the phase is 0 for low frequencies and π/2 for high
frequencies. Bode investigated the relations between the curves for systems
with no poles and zeros in the right half plane. He found that the phase was
a uniquely given by the gain and vice versa.

argG(iω0) =
1

π

∫ ∞

0

d log |G(iω)|
d logω

log
∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣
d logω

=
π

2

∫ ∞

0
f(ω)

d log |G(iω)|
d logω

d logω ≈ π

2

d log |G(iω)|
d logω

(7.5)

where f is the weighting kernel

f(ω) =
2

π2
log

∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣ =
2

π2
log

∣

∣

∣

∣

∣

ω
ω0

+ 1
ω
ω0

− 1

∣

∣

∣

∣

∣

The phase curve is thus a weighted average of the derivative of the gain
curve. The weight w is shown in Figure 7.11. Notice that the weight falls
off rapidly, it is practically zero when frequency has changed by a factor of
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Figure 7.11: The weighting kernel f in Bodes formula for computing the
phase curve from the gain curve for minimum phase systems.

ten. It follows from (7.5) that a slope of +1 corresponds to a phase of π/2
or 90◦. Compare with Figure 6.3, where the Bode plots have constant slopes
-1 and +1.

Non-minimum Phase Systems

Bode’s relations hold for systems that do not have poles and zeros in the
left half plane. Such systems are called minimum phase systems because
systems with poles and zeros in the right half plane have larger phase lag.
The distinction is important in practice because minimum phase systems
are easier to control than systems with larger phase lag. We will now give a
few examples of non-minimum phase.

Example 7.6 (A Time Delay). The transfer function of a time delay of T
units is G(s) = e−sT . This transfer function has unit gain, |G(iω)| = 1, and
the phase is

argG(iω) = −ωT

The corresponding minimum phase system with unit gain has the transfer
function G(s) = 1. The time delay thus has an additional phase lag of
ωT . Notice that the phase lag increases linearly with frequency. Figure 7.12
shows the Bode plot of the transfer function.

It seems intuitively reasonable it is impossible to make a system with
a time delay respond faster than the time delay. The presence of a time
delay will thus limit the response speed of a system. Next we will consider
a system with a zero in the right half plane.
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Figure 7.12: Bode plots of a time delay G(s) = e−sT (left) and a system
with a right half plane zero G(s) = (a− s)/(a+ s) (right). The dashed lines
show the phase curves of the corresponding minimum phase systems.

Example 7.7 (System with a RHP zero). Consider a system with the transfer
function

G(s) =
a− s

a+ s
, a > 0

which has a zero s = a in the right half plane. The transfer function has
unit gain, |G(iω)| = 1, and

argG(iω) = −2 arctan
ω

a

The corresponding minimum phase system with unit gain has the transfer
function G(s) = 1. Figure 7.12 shows the Bode plot of the transfer func-
tion. The Bode plot resembles the Bode plot for a time delay which is not
surprising because the exponential function e−sT can be approximated by

e−sT ≈ 1 − sT/2

1 + sT/2
.

As far as minimum phase properties are concerned a right half plane zero
at s = a is thus similar to a time delay of T = 2/a. Since long time delays
create difficulties in controlling a system we may expect that systems with
zeros close to the origin are also difficult to control.
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Figure 7.13: Step responses (left) and Bode plots (right) of a system with
a zero in the right half plane (full lines) and the corresponding minimum
phase system (dashed).

shows the step response of a system with the transfer function

G(s) =
6(−s+ 1)

s2 + 5s+ 6
,

which a zero in the right half plane. Notice that the output goes in the
wrong direction initially, which is also referred to as inverse response. The
figure also shows the step response of the corresponding minimum phase
system which has the transfer function

G(s) =
6(s+ 1)

s2 + 5s+ 6
.

The curves show that the minimum phase system responds much faster.
It thus appears that a the non-minimum phase system is more difficult to
control. This is indeed the case as will be shown in Section 7.7.

The presence of poles and zeros in the right half plane imposes severe
limitation on the achieveable performance. Dynamics of this type should be
avoided by redesign of the system. The poles are intrinsic properties of the
system and they do not depend on sensors and actuators. The zeros depend
on how inputs and outputs of a system are coupled to the states. Zeros can
thus be changed by moving sensors and actuators or by introducing new
sensors and actuators. Non-minimum phase systems are unfortunately not
uncommon in practice. We end this section by giving a few examples of
such systems.
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Example 7.8 (Backing a Car). Consider backing a car close to a curb. The
transfer function from steering angle to distance from the curve is non-
minimum phase. This is a mechanism that is similar to the aircraft.

Example 7.9 (Flight Control). The transfer function from elevon to height in
an airplane is non-minimum phase. When the elevon is raised there will be a
force that pushes the rear of the airplane down. This causes a rotation which
gives an increase of the angle of attack and an increase of the lift. Initially
the aircraft will however loose height. The Wright brothers understood this
and used control surfaces in the front of the aircraft to avoid the effect.

Example 7.10 (Revenue from Development). The time behavior of the profits
from a new project typically has the behavior shown in Figure 7.13 which
indicates that such a system is difficult to control tightly.

7.6 Loop Shaping

One advantage the the Nyquist stability theorem is that it is based on the
loop transfer function which is related to the controller transfer function
through L(s) = P (s)C(s). It is thus easy to see how the controller influences
the loop transfer function. To make an unstable system stable we simply
have to bend the Nyquist curve away from the critical point. This simple
idea is the basis of several design method called loop shaping. The methods
are based on the idea of choosing a compensator that gives a loop transfer
function with a desired shape. One possibility is to start with the loop
transfer function of the process and modify it by changing the gain, and
adding poles and zeros to the controller until the desired shape is obtained.
Another more direct method is to determine a loop transfer function L0

which gives the desired robustness and performance. The controller transfer
function is then given by

C(s) =
L0(s)

P (s)
. (7.6)

We will first discuss suitable forms of a loop transfer function which gives
good performance and good stability margins. Good robustness requires
good gain and phase margins. This imposes requirements on the loop trans-
fer function around the crossover frequencies ωpc and ωgc. The gain of L0

at low frequencies must be large in order to have good tracking of com-
mand signals and good rejection of low frequency disturbances. This can be
achieved by having a large crossover frequency and a steep slope of the gain
curve for the loop transfer function at low frequencies. To avoid injecting
too much measurement noise into the system it is desirable that the loop
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The gain crossover frequency ωgc and the slope ngc of the gain curve at
crossover are important parameters.

transfer function has a low gain at frequencies higher than the crossover fre-
quencies. The loop transfer function should thus have the shape indicated
in Figure 7.14.

Bodes relations (7.5) impose restrictions on the shape of the loop transfer
function. Equation (7.5) implies that the slope of the gain curve at gain
crossover cannot be too steep. If the gain curve is constant we have the
following relation between slope n and phase margin ϕm

ngc = −2 +
ϕm

90
. (7.7)

This formula holds approximately when the gain curve does not deviate too
much from a straight line. It follows from(7.7) that the phase margins 30◦,
45circ and 60◦ corresponds to the slopes -5/3, -3/2 and -4/3.

There are many specific design methods that are based on loop shaping.
We will illustrate by a design of a PI controller.

Design of a PI Controller

Consider a system with the transfer function

P (s) =
1

(s+ 1)4
(7.8)
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A PI controller has the transfer function

C(s) = k +
ki

s
= k

1 + sTi

sTi

The controller has high gain at low frequencies and its phase lag is negative
for all parameter choices. To have good performance it is desirable to have
high gain and a high gain crossover frequency. Since a PI controller has
negative phase the gain crossover frequency must be such that the process
has phase of at lag smaller than 180 − ϕm, where ϕm is the desired phase
margin. For the process (7.8) we have

argP (iω) = −4 arctanω

If a phase margin of π/3 or 60◦ is required we find that the highest gain
crossover frequency that can be obtained with a proportional controller is
ωgc = tanπ/6 = 0.577. The gain crossover frequency must be lower with PI
control.

A simple way to design a PI controller is to specify the gain crossover
frequency to be ωgc. This gives

L(iω) = P (iω)C(iω) =
kP (iω)

√

1 + ω2
gcT

2
i

ωgcTi
= 1

which implies

k =

√

1 + ω2
gcT

2
i

ωgcTiP (iωgc)

We have one equation for the unknowns k and Ti. An additional condi-
tion can be obtained by requiring that the PI controller has a phase lag of
arctan 0.5 or 45◦ at the gain crossover, hence ωTi = 0.5. Figure 7.15 shows
the Bode plot of the loop transfer function for ωgc = 0.1, 0.2, 0.3, 0.4 and
0.5. The phase margins for corresponding to these crossover frequencies
are 94◦, 71◦, 49◦, 29◦ and 11◦. The gain crossover frequency must be less
than 0.26 to have the desired phase margin 60◦. Figure 7.15 shows that the
controller increases the low frequency gain significantly at low frequencies
and that the the phase lag decreases. The figure also illustrates the tradeoff
between performance and robustness. A large value of ωgc gives a higher low
frequency gain and a lower phase margin. Figure 7.16 shows the Nyquist
plots of the loop transfer functions and the step responses of the closed loop
system. The response to command signals show that the designs with large
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Figure 7.15: Bode plot of the loop transfer function for PI control of a
process with the transfer function P (s) = 1/(s + 1)4 with ωgc = 0.1 (dash-
dotted), 0.2, 0.3, 0.4 and 0.5. The dashed line in the figure is the Bode plot
of the process.

ωgc are too oscillatory. A reasonable compromise between robustness and
performance is to choose ωgc in the range 0.2 to 0.3. For ωgc = 0.25 we the
controller parameters are k = 0.50 and Ti = 2.0. Notice that the Nyquist
plot of the loop transfer function is bent towards the left for low frequencies.
This is an indication that integral action is too weak. Notice in Figure 7.16
that the corresponding step responses are also very sluggish.

Bode’s Loop Transfer Function

Any loop transfer function can be obtained by proper compensation for
processes that have minimum phase. It is then interesting to find out if
there is a best form of loop transfer function. When working with feedback
amplifiers Bode suggested the following loop transfer function.

L(s) =
( s

ωgc

)α
. (7.9)
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Figure 7.16: Nyquist plot of the loop transfer function for PI control of a
process with the transfer function P (s) = 1/(s + 1)4 with ωgc = 0.1 (dash-
dotted), 0.2, 0.3, 0.4 and 0.5 (left) and corresponding step responses of the
closed loop system (right).

The Nyquist curve for this loop transfer function is simply a straight line
through the origin with argL(iω) = απ/2, see Figure 7.17. Bode called (7.9)
the ideal cut-off characteristic. We will simply call it Bode’s loop transfer
function. The reason why Bode choose this particular loop transfer function
is that it gives a closed-loop system where the phase margin is constant
ϕm = π(1 +α/2) even if the gain changes and that the amplitude margin is
infinite. The slopes α = −4/3, −1.5 and −5/3 correspond to phase margins
of 60◦, 45◦ and 30◦. Compare with (7.7). Notice however that the crossover
frequency changes when the gain changes.

The transfer function given by Equation (7.9) is an irrational transfer
function for non-integer n. It can be approximated arbitrarily close by ratio-
nal frequency functions. Bode realized that it was sufficient to approximate
L over a frequency range around the desired crossover frequency ωgc. As-
sume for example that the gain of the process varies between kmin and kmax

and that it is desired to have a loop transfer function that is close to (7.9)
in the frequency range (ωmin, ωmax). It follows from (7.9) that

ωmax

ωmin
=
(kmax

kmin

)1/α

With α = −5/3 and a gain ratio of 100 we get a frequency ratio of about 16
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Figure 7.17: Nyquist curve for Bode’s loop transfer function. The unit circle
is also shown in the figure.

and with α = −4/3 we get a frequency ratio of 32. To avoid having too large
a frequency range it is thus useful to have α as small as possible. There is,
however, a compromise because the phase margin decreases with decreasing
α and the system becomes unstable for α = −2.

The operational amplifier is a system that approximates the loop transfer
function (7.9) with α = 1. This amplifier has the useful property that it is
stable under a very wide range of feedbacks.

Fractional Systems

It follows from Equation (7.9) that the loop transfer function is not a rational
function. We illustrate this with a process having the transfer function.

P (s) =
k

s(s+ 1)

Assume that we would like to have a closed loop system that is insensitive
to gain variations with a phase margin of 45◦. Bode’s ideal loop transfer
function that gives this phase margin is

L(s) =
1

s
√
s

(7.10)

Since L = PC we find that the controller transfer function is

C(s) =
s+ 1√
s

=
√
s+

1√
s

(7.11)
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Figure 7.18: Bode diagram of the loop transfer function obtained by approx-
imating the fractional controller (7.11) with the rational transfer function
(7.12). The fractional transfer function is shown in full lines and the ap-
proximation in dashed lines.

To implement a controller the transfer function is approximated with a ra-
tional function. This can be done in many ways. One possibility is the
following

Ĉ(s) = k
(s+ 1/16)(s+ 1/4)(s+ 1)2(s+ 4)(s+ 16)

(s+ 1/32)(s+ 1/8)(s+ 1/2)(s+ 2)(s+ 8)(s+ 32)
(7.12)

where the gain k is chosen to equal the gain of
√
s+ 1/

√
s for s = i. Notice

that the controller is composed of sections of equal length having slopes
0, +1 and -1 in the Bode diagram. Figure 7.18 shows the Bode diagrams
of the loop transfer functions obtained with the fractional controller (7.11)
and its approximation (7.12). The differences between the gain curves is not
visible in the graph. Figure 7.18 shows that the phase margin is close to 45◦

even if the gain changes substantially. The differences in phase is less than
2◦ for a gain variation of 2 orders of magnitude. The range of permissible
gain variations can be extended by increasing the order of the approximate
controller (7.12). Even if the closed loop system has the same phase margin
when the gain changes the response speed will change with the gain. The
performance will however change with gain because the response time will
vary significantly with gain.
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The example shows that robustness is obtained by increasing controller
complexity. The range of gain variation that the system can tolerate can be
increased by increasing the complexity of the controller.

Ä

7.7 Fundamental Limitations

It follows from (7.6) that loop shaping design may cause cancellations of
process poles and zeros. The canceled poles and zeros do not appear in the
loop transfer function but they appear in the Gang of Four. Cancellations be
disastrous if the canceled factors are unstable as was shown in Section 6.7.
This implies that there is a major difference between minimum phase and
non-minimum phase systems.

To explore the limitations caused by poles and zeros in the right half
plane we factor the process transfer function as

P (s) = Pmp(s)Pnmp(s) (7.13)

where Pmp is the minimum phase part and Pnmp is the non-minimum phase
part. The factorization is normalized so that |Pnmp(iω)| = 1 and the sign is
chosen so that Pnmp has negative phase. Let the controller transfer function
be C(s), the loop transfer function is then L(s) = P (s)C(s). Requiring that
the phase margin is ϕm we get

argL(iωgc) = argPnmp(iωgc) + argPmp(iωgc) + argC(iωgc) ≥ −π + ϕm.
(7.14)

Let ngc be the slope of the gain curve at the crossover frequency, since
|Pnmp(iω)| = 1 it follows that

ngc =
d log |L(iω)|
d logω

∣

∣

∣

∣

∣

ω=ωgc

=
d log |Pmp(iω)C(iω)|

d logω

∣

∣

∣

∣

∣

ω=ωgc

.

The slope ngc is negative and larger than -2 if the system is stable. It follows
from Bode’s relations Equation 7.5 that

argPmp(iω) + argC(iω) ≈ n
π

2

Combining this with Equation (7.14) gives the following inequality

ϕ` = − argPnmp(iωgc) ≤ π − ϕm + ngc
π

2
(7.15)
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Figure 7.19: Bode plot of process transfer function (full lines) and corre-
sponding minimum phase transfer function (dashed).

This condition which we call the crossover frequency inequality shows that
the gain crossover frequency must be chosen so that the phase lag of the non-
minimum phase component is not too large. To find numerical values we will
consider some reasonable design choices. A phase margin of 45◦ (ϕm = π/4),
and a slope ngc = −1/2 gives an admissible phase lag of ϕ` = π/2 = 1.57
and a phase margin of 45◦ and ngc = −1 gives and admissible phase lag
ϕ` = π/4 = 0.78. It is thus reasonable to require that the phase lag of the
non-minimum phase part is in the range of 0.5 to 1.6.

The crossover frequency inequality implies that non-minimum phase
components impose severe restrictions on possible crossover frequencies. It
also means that there are systems that cannot be controlled with sufficient
stability margins.

The conditions are more stringent if the process has an uncertainty
∆P (iωgc). The admissible phase lag is then reduced by arg ∆P (iωgc).

A straight forward way to use the crossover frequency inequality is to
plot the phase of the transfer function of the process and the phase of the
corresponding minimum phase system. Such a plot which is shown in Fig-
ure 7.19 will immediately show the permissible gain crossover frequencies.
As an illustration we will give some analytical examples.
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A Zero in the Right Half Plane

The non-minimum phase part of the plant transfer function for a system
with a right half plane zero is

Pnmp(s) =
z − s

z + s
. (7.16)

where z > 0. The phase lag of the non-minimum phase part is

ϕ` = − argPnmp(iω) = 2 arctan
ω

z

Since the phase of Pnmp decreases with frequency the inequality (7.15) gives
the following bound on the crossover frequency.

ωgc

z
≤ tan

ϕ`

2
. (7.17)

With reasonable values of ϕ` we find that the gain crossover frequency must
be smaller than the right half plane zero. It also follows that systems with
slow zeros are more difficult to control than system with fast zeros.

A Time Delay

The transfer function of a time delay is

P (s) = e−sT . (7.18)

This is also the non-minimum phase part Pnmp. The phase lag of the non-
minimum phase part is

ϕ` = − argPnmp(iω) = ωT.

If the transfer function for the time delay is approximated by

e−sT ≈ 1 − sT/2

1 + sT/2

we find that a time delay T corresponds to a RHP zero z = −2/T . A slow
zero thus corresponds to a long time delay.
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A Pole in the Right Half Plane

The non-minimum phase part of the transfer function for a system with a
pole in the right half plane is

Pnmp(s) =
s+ p

s− p
(7.19)

where p > 0. The phase lag of the non-minimum phase part is

ϕ` = − argPnmp(iω) = 2 arctan
p

ω
.

and the crossover frequency inequality becomes

ωgc >
p

tan(ϕ`/2)
.

With reasonable values of ϕ` we find that the gain crossover frequency should
be larger than the unstable pole.

A Pole and a Zero in the Right Half Plane

The non-minimum phase part of the transfer function for a system with
both poles and zeros in the right half plane is

Pnmp(s) =
(z − s)(s+ p)

(z + s)(s− p)
. (7.20)

The phase lag of this transfer function is

ϕ` = − argPnmp(iω) = 2 arctan
ω

z
+ 2 arctan

p

ω
= 2 arctan

ωgc/z + p/ωgc

1 − p/z
.

The right hand side has its minimum

min
ωgc

(

2 arctan
ωgc/z + p/ωgc

1 − p/z

)

= 2 arctan
2
√

p/z

1 − p/z
= 4 arctan

√

p

z
,

for ω =
√
pz, and the crossover frequency inequality (7.15) becomes

ϕ` = − argPnmp(iω) ≤ 4 arctan

√

p

z
,

or
p

z
≤ tan

ϕ`

4
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Table 7.1: Achievable phase margin for for ϕm = π/4 and ngc = −1/2 and
different pole-zero ratios p/z.

p/z 0.45 0.24 0.20 0.17 0.12 0.10 0.05

z/p 2.24 4.11 5.00 5.83 8.68 10 20

ϕm 0 30 38.6 45 60 64.8 84.6

Figure 7.20: Bicycle with rear wheel steering.

The design choices ϕm = π/4 and ngc = −1/2 gives p < 0.17z. Table 7.1
shows the admissible pole-zero ratios for different phase margins. The phase-
margin that can be achieved for a given ratio p/z is

ϕm < π + ngc
π

2
− 4 arctan

√

p

z
. (7.21)

A pair of poles and zeros in the right half plane imposes severe constraints
on the gain crossover frequency. The best gain crossover frequency is the
geometric mean of the unstable pole and zero. A robust controller does not
exist unless the pole-zero ratio is sufficiently small.

Example 7.11 (The Rear Steered Bicycle). A bicycle with rear wheel steering
is shown in Figure 7.20. The transfer function from steering angle δ to tilt
angle θ is

Gθδ(s) =
mhV

Jc

V − as

s2 −mgh/J
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Figure 7.21: The X-29 aircraft.

where m is the total mass of the bicycle and the rider, J the total moment of
inertia of bicycle and rider with respect to the contact line of the wheels and
the ground, h the height of the center of mass from the ground, a the vertical
distance from the center of mass to the contact point of the front wheel, V
the forward velocity, and g the acceleration of gravity. The system has a
pole at s = p =

√

mgh/J in the right half plane, caused by the pendulum
effect. The system also has a zero at s = z = V/a in the right half plane.
The pole-zero ratio is

p

z
=

a

V

√

mgh

J

Typical values are m = 70 kg, h = 1.2 m, a = 0.7, J = 120 kgm2 and V = 5
m/s, give z = V/a = 7.14 rad/s and p = ω0 = 2.6 rad/s. The pole-zero
ratio is p = 0.36z, which is too large. Table 7.1 indicates that the achievable
phase margin is much to small. This explains why it practically impossible
to read the bicycle.

Example 7.12 (The X-29). The X-29 is an experimental aircraft with for-
ward swept wings, see Figure 7.21. Considerable design effort has been
devoted to the design of the flight control system for the aircraft. One of
the design criteria was that the phase margin should be greater than 45◦

for all flight conditions. At one flight condition the model has the following
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non-minimum phase component

Pnmp(s) =
s− 26

s− 6

Since the pole/zero ratio is 6/26 = 0.23, it follows from Table 7.1 that the
achievable phase margin is less than 45◦.

A Pole in the Right Half Plane and Time Delay

The non-minimum phase part of the transfer function for a a system with
one pole in the right half plane and a time delay T is

Pnmp(s) =
s+ p

s− p
e−sT . (7.22)

This transfer function has the phase lag

ϕ` = − argP (iω) = 2 arctan
p

ωgc
+ ωgcT = π − 2 arctanωp+ ωT. (7.23)

The right hand side is larger than π if pT > 2 and the system cannot be
stabilized. If pT < 2 the smallest phase lag

min
ω

(

2 arctan
p

ωgc
+ ωgcT

)

= 2 arctan

√

2

pT
− 1 − pT

√

2

pT
− 1,

is obtained for

ωgc = p

√

2

pL
− 1.

The design choice ϕm = π/4 and ngc = −0.5 gives

pT ≤ 0.326. (7.24)

To control the system robustly the product of the time delay and the un-
stable pole must sufficiently small.

Example 7.13 (Pole balancing). Consider balancing of an inverted pendu-
lum. A pendulum of length ` has a right half plane pole

√

g/`. Assuming
that the neural lag of a human is 0.07 s. The inequality (7.24) gives ` > 0.45.
The calculation thus indicate that it should possible to balance a pendulum
whose length is 0.5 m. To balance a pendulum whose length is 0.1 m the
time delay must be less than 0.03s.

Pendulum balancing has also been done using video cameras as angle
sensors. The limited video rate imposes strong limitations on what can be
achieved. With a video rate of 20 Hz it follows from (??) that the shortest
pendulum that can be balanced robustly with ϕm = 45◦ and ngc = −0.5 is
` = 0.23m.
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Avoiding Difficulties with RHP Poles and Zeros

The poles of a system depend on the intrinsic dynamics of the system. They
are the eigenvalues of the dynamics matrix A of a linear system. Sensors
and actuators have no effect on the poles. The only way to change poles is
to redesign a system. Notice that this does not imply that unstable systems
should be avoided. Unstable system may actually have advantages, one
example is high performance supersonic aircrafts.

The zeros of a system depend on the how sensors and actuators are
coupled to the states. The zeros depend on all the matrices A, B, C and D
in a linear system. The zeros can thus be influenced by moving sensors and
actuators or by adding sensors and actuators. Notice that a fully actuated
system B = I does not have any zeros.

7.8 The Small Gain Theorem

For linear systems it follows from Nyquist’s theorem that the closed loop
is stable if the gain of the loop transfer function is less than one for all
frequencies. This result can be extended to much more general situations.
To do so we need a general concept of gain of a system. For this purpose
we first define appropriate classes of input and output signals, u ∈ U and
u ∈ Y, where U and Y are spaces where a notion of magnitude is defined.
The gain of a system is defined as

γ = sup
u∈U

||y||
||u|| .

A system is input-output stable if the gain is finite. This definition also
works for nonlinear systems. Now consider the closed system in Figure 7.22.
Let the gains of the systems H1 and H2 be γ1 and γ2. The small gain
theorem says that the closed loop system is input output stable if γ1γ1 <,
and the gain of the closed loop system is

γ =
γ1

1 − γ1γ2

Notice that if systems H1 and H2 are linear it follows from the Nyquist
stability theorem that the closed loop is stable, because if γ1γ2 < 1 the
Nyquist curve is always inside the unit circle. The small gain theorem is
thus an extension of the Nyquist stability theorem.

It also follows from the Nyquist stability theorem that a closed loop
system is stable if the phase of the loop transfer function is between −π and
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Σ
u e y

    H1

    − H2

Figure 7.22: A simple feedback loop.

π. This result can also be extended to nonlinear system. The result which
is called the passivity theorem is closely related to the small gain theorem.

7.9 Further Reading

Nyquists original paper in Bellmans monograph. Bodes book, James Nichols
Phillips, Chestnut Meyer, Truxal, kja limitations paper.

7.10 Exercises

1. Backing a car

2. Boeing 747

3. Consider a closed loop system for stabilization of an inverted pendulum
with a PD controller. The loop transfer function is

L(s) =
s+ 2

s2 − 1
(7.25)

This transfer function has one pole at s = 1 in the right half plane.
The Nyquist plot of the loop transfer function is shown in Figure 7.23.
Traversing the contour Γ in clockwise we find that the winding number
is -1. Applying Theorem 1 we find that

N − P = −1

Since the loop transfer function has a pole in the right half plane we
have P = 1 and we get N = 0. The characteristic equation thus has
no roots in the right half plane and the closed loop system is stable.
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Figure 7.23: Map of the contour Γ under the map L(s) = s+2
s2−1

given by
(7.25). The map of the positive imaginary axis is shown in full lines, the
map of the negative imaginary axis and the small semi circle at the origin
in dashed lines.
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