
Chapter 4

Input/Output Behavior

Research engineer Harold S. Black revolutionized telecommunications by in-
venting systems that eliminated feedback distortion in telephone calls. The
major task confronting the lab at that time was elimination of distortion.
After six years of persistence, Black conceived the principles and equations
for his negative feedback amplifier in a flash commuting to work aboard the
ferry. Basically, the concept involved feeding systems output back to the
input as a method of system control.

National Inventors Hall of Fame, www.invent.org

Previous chapters have focused on the dynamics of a system with rel-
atively little attention the inputs and outputs. This chapter gives an in-
troduction to input/output behavior for linear systems and shows how a
nonlinear system can be approximated locally by a linear model.

4.1 Introduction

In Chapters 2 and 3 we consider construction and analysis of differential
equation models for physical systems. We placed very few restrictions
on these systems other than basic requirements of smoothness and well-
posedness. In this chapter we specialize our results to the case of linear,
time-invariant, input/output systems. This important class of systems is
one for which a wealth of analysis and synthesis tools are available, and
hence it has found great utility in a wide variety of applications.
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What Is a Linear System?

Recall that a function F : R
p → R

q is said to be linear if it satisfies the
following property:

F (αx+ βy) = αF (x) + βF (y) x, y ∈ R
p, α, β ∈ R. (4.1)

This equation implies that the function applied to the sum of two vectors
is the sum of the function applied to the individual vectors, and that the
results of applying F to a scaled vector is given by scaling the result of
applying F to the original vector.

Input/output systems are described in a similar manner. Namely, we
wish to capture the notion that if we apply two inputs u1 and u2 to a
dynamical system and obtain outputs y1 and y2, then the result of applying
the sum, u1 + u2, would give y1 + y2 as the output. Similarly, scaling one of
the inputs would give a scaled version of the outputs. Thus, if we apply the
input

u(t) = αu1(t) + βu2(t)

then the output should be given by

y(t) = αy1(t) + βy2(t).

This property is called linear superposition; when it holds (and after tak-
ing into account some subtleties with initial conditions), we say that the
input/output system is linear.

A second source of linearity in the systems we will study is between
the transient response to initial conditions and the forced response due to
the input. You may recall from the study of ordinary differential equa-
tions that the solution to a linear ODE is broken into two components: the
homogeneous response, yh(t), that depends only on initial conditions, and
the particular response, yp(t), that depends only on the input. The com-
plete solution is the some of these two components, y(t) = yh(t) + yp(t).
As we will see in this chapter, it can be further shown that if we scale
the initial conditions by α and the input by β, then the solution will be
y(t) = αyh(t) + βyp(t), just as in the case of a linear function.

As we shall show more formally in the next section, linear ordinary
differential equations generate linear input/output systems. Indeed, it can
be shown that if a state space system exhibits linear response to inputs
and initial conditions, then it can always be written as a linear differential
equation.
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Where Do Linear Systems Come From?

Before defining linear systems more systematically, we take a moment to
consider where linear systems appear in science and engineering examples.
We have seen several examples of linear differential equations in the examples
of the previous chapters. These include the spring mass system (damped
oscillator) and the electric motor.

More generally, many physical systems can be modeled very accurately
by linear differential equations. Electrical circuits are one example of a
broad class of systems for which linear models can be used effectively. Linear
models are also broadly applicable in mechanical engineering, for example
as models of small deviations from equilibria in solid and fluid mechanics.
Signal processing systems, including digital filters of the sort used in CD and
MP3 players, are another source of good examples, although often these are
best modeled in discrete time.

In many cases, we create systems with linear input/output response
through the use of feedback. Indeed, it was the desire for linear behav-
ior that led Harold S. Black, mentioned in the quotation at the beginning of
the chapter, to the principle of feedback as a mechanism for generating am-
plification. Almost all modern single processing systems, whether analog or
digital, use feedback to produce linear or near-linear input/output charac-
teristics. For these systems, it is often useful to represent the input/output
characteristics as linear, ignoring the internal details required to get that
linear response.

For other systems, nonlinearities cannot be ignored if one cares about
the global behavior of the system. The predator prey problem is one exam-
ple of this; to capture the oscillatory behavior of the couple populations we
must include the nonlinear coupling terms. However, if we care about what
happens near an equilibrium point, it often suffices to approximate the non-
linear dynamics by their local linearization. The linearization is essentially
an approximation of the nonlinear dynamics around the desired operating
point.

No matter where they come from, the tools of linear systems analysis are
a powerful collection of techniques that can be used to better understand
and design feedback systems.

4.2 Properties of Linear Systems

In this section we give a more formal definition of linear input/output sys-
tems and describe the major properties of this important class of systems.
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A linear dynamical system can be represented as

dx

dt
= Ax+Bu

y = Cx+Du,
(4.2)

where x ∈ R
n, u ∈ R

p, y ∈ R
q and hence A ∈ R

n×n is an n × n matrix
and similarly B ∈ R

n×p, C ∈ R
q×n, D ∈ R

q×p. This is one of the standard
models in control. As in the previous chapters, we will usually restrict
ourselves to the SISO case by taking p = q = 1.

Definitions

Consider a state space system of the form

ẋ = f(x, u)

y = h(x, u)
(4.3)

We will assume that all functions are smooth and that for a reasonable class
of inputs (e.g., piecewise continuous functions of time) that the solutions of
equation (4.3) exist for all time.

It will be convenient to assume that the origin x = 0, u = 0 is an
equilibrium point for this system (ẋ = 0) and that h(0, 0) = 0. Indeed, we
can do so without loss of generality. To see this, suppose that (xe, ue) 6= (0, 0)
is an equilibrium point of the system with output ye = h(xe, ue) 6= 0. Then
we can define a new set of states, inputs, and outputs

x̃ = x− xe ũ = u− ue ỹ = y − ye

and rewrite the equations of motion in terms of these variables:

d

dt
x̃ = f(x̃+ xe, ũ+ ue) =: f̃(x̃, ũ)

ỹ = h(x̃+ xe, ũ+ ue) =: h̃(x̃, ũ).

In the new set of variables, we have the the origin is an equilibrium point
with output 0, and hence we can carry our analysis out in this set of vari-
ables. Once we have obtained our answers in this new set of variables, we
simply have to remember to “translate” them back to the original coordi-
nates (through a simple set of additions).

Returning to the original equations (4.3), now assuming without loss of
generality that the origin is the equilibrium point of interest, we define the
system to be a linear input/output system if the following conditions are
satisfied:
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(i) If yh1(t) is the output of the solution to equation (4.3) with initial
condition x(0) = x1 and input u(t) = 0 and yh2(t) is the output
with initial condition x(0) = x2 and input u(t) = 0, then the output
corresponding to the solution of equation (4.3) with initial condition
x(0) = αx1 + βx2 is

y(t) = αyh1(t) + βyh2(t).

(ii) If yh(t) is the output of the solution to equation (4.3) with initial
condition x(0) = x0 and input u(t) = 0, and yp(t) is the output of the
system with initial condition x(0) = 0 and input u(t), then the output
corresponding to the solution of equation (4.3) with initial condition
x(0) = αx0 and input βu(t) is

y(t) = αyh(t) + βyp(t).

(iii) If y1(t) and y2(t) are outputs corresponding to solutions to the sys-
tem 4.3 with initial conditions x(0) = 0 and inputs u1(t) and u2(t),
respectively, then the solution of the differential equation with initial
condition x(0) = 0 and input δu1(t)+γu2(t) has output δy1(t)+γy2(t).

Thus, we define a system to be linear if the outputs are jointly linear in the
initial condition response and the forced response.

The linearity of the outputs with respect to the inputs (and the state) is
called the principle of superposition and is illustrated in Figure 4.1 for the
case where x(0) = 0. The basic idea is that if we have two input signals and
we add them together, then the output is simply the superposition (sum)
of the corresponding output signals. This property of linear systems is a
critical one and allows us to use many tools from mathematics to study the
stability and performance of such systems.

We now consider a differential equation of the form

ẋ = Ax+Bu (4.4)

where A ∈ R
n×n is a square matrix, B ∈ R

n is a column vector of length n.
(In the case of a multi-input systems, B becomes a matrix of appropriate
dimension.) Equation (4.4) is a system of linear, first order, differential
equations with input u and state x. We now show that this system is linear
system, in the sense described above.

Theorem 4.1. Let xh1(t) and xh2(t) be the solutions of the linear differen-
tial equation (4.4) with input u(t) = 0 and initial conditions x(0) = x1 and
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Figure 4.1: Illustration of the principle of superposition.
.

x2, respectively, and and let xp1(t) and xp2(t) be the solutions with initial
condition x(0) = 0 and inputs u1(t), u2(t) ∈ R. Then the solution of equa-
tion (4.4) with initial condition x(0) = αx1+βx2 and input u(t) = δu1+γu2

and is given by

x(t) =
(

αxh1(t) + βxh2(t)
)

+
(

δxp1(t) + γxp2(t)
)

.

Proof. Substitution.

It follows that since the output is a linear combination of the states
(through multiplication by the row vector C), the system is input/output
linear as we defined above. As in the case of linear differential equations
in a single variable, we define the solution xh(t) with zero input as the
homogeneous solution and the solution xp(t) with zero initial condition as
the particular solution.

It is also possible to show that if a system is input/output linear in the
sense we have described, that it can always be represented by a state space
equation of the form (4.4) through appropriate choice of state variables.

The Matrix Exponential

Although we have shown that the solution of a linear set of input/output
differential equations defines a linear input/output system, we have not ac-
tually solved for the solution of the system. We begin by considering the
homogeneous response, corresponding to the system

ẋ = Ax (4.5)
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For the scalar differential equation

ẋ = ax x ∈ R, a ∈ R

the solution is given by the exponential

x(t) = eatx(0).

We wish to generalize this to the vector case, where A becomes a matrix.

We define the matrix exponential as the infinite series

eS = I + S +
1

2
S2 +

1

3!
S3 + · · · =

∞
∑

k=0

1

k!
Sk, (4.6)

where S ∈ R
n×n is a square matrix and I is the n× n identity matrix. We

make use of the notation

S0 = I S2 = SS Sn = Sn−1S,

which defines what we mean by the “power” of a matrix. Equation (4.6) is
easy to remember since it is just the Taylor series for the scalar exponential,
applied to the matrix S. It can be shown that the series in equation (4.6)
converges for any matrix S ∈ R

n×n in the same way that the normal expo-
nential is define for any scalar a ∈ R.

Replacing S in (4.6) by At where t ∈ R we find that

eAt = I +At+
1

2
A2t2 +

1

3!
A3t3 + · · · =

∞
∑

k=0

1

k!
Aktk,

Differentiating this expression with respect to t gives

d

dt
eAt = A+At+

1

2
A3t2 + · · · = A

∞
∑

k=0

1

k!
Aktk = AeAt. (4.7)

Multiplying by x(0) from the right we find that x(t) = eAtx(0) is the solution
to the differential equation (4.5) with initial condition x(0). We summarize
this important result as a theorem.

Theorem 4.2. The solution to the homogeneous system of differential equa-
tion (4.5) is given by

x(t) = eAtx(0).
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Notice that the form of the solution is exactly the same as for scalar
equations.

The form of the solution immediately allows us to see that the solution
is linear in the initial condition. In particular, if xh1 is the solution to
equation (4.5) with initial condition x(0) = x1 and xh2 with initial condition
x2, then the solution with initial condition x(0) = αx1 + βx2 is given by

x(t) = eAt
(

αx1 + βx2

)

=
(

αeAtx1 + βeAtx2) = αxh1(t) + βxh2(t)

Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = αyh1(t) + βyh2(t),

where y1 and y2 are the outputs corresponding to xh1 and xh2.
We illustrate computation of the matrix exponential by three examples.

Example 4.1 (The double integrator). A very simple linear system that is
useful for understanding basic concepts is the second order system given by

q̈ = u

y = q.

This system system is called a double integrator because the input u is
integrated twice to determine the output y.

In state space form, we write x = (q, q̇) and

ẋ =

[

0 1
0 0

]

x+

[

0
1

]

u.

The dynamics matrix of a double integrator is

A =

[

0 1
0 0

]

and we find by direct calculation that A2 = 0 and hence

eAt =

[

1 t
0 1

]

.

Thus the homogeneous solution (u = 0) for the double integrator is given
by

x(t) =

[

x1(0) + tx2(0)
x2(0)

]

y(t) = x1(0) + tx2(0).
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Example 4.2 (Undamped oscillator). A simple model for an oscillator, such
as the spring mass system with zero damping, is

q̈ + kq = u.

Setting k = 1 and putting the system into state space form, the dynamics
matrix for this system is

A =

[

0 1
−1 0

]

We have

eAt =

[

cos t sin t
− sin t cos t

]

which can be verified by differentiation:

d

dt
eAt =

[

− sin t cos t
− cos t − sin t

]

=

[

0 1
−1 0

] [

cos t sin t
− sin t cos t

]

.

Example 4.3 (Diagonal system). Consider a diagonal matrix

A =











λ1 0
λ2

. . .

0 λn











The kth power of At is also diagonal,

(At)k =











λk
1t

k 0
λk

2t
k

. . .

0 λk
nt

k











and it follows from the series expansion that the matrix exponential is given
by

eAt =











eλ1t 0
eλ2t

. . .

0 eλnt











.
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The Convolution Integral

We now return to the general input/output case in equation (4.2), repeated
here:

ẋ = Ax+Bu

y = Cx+Du.
(4.8)

Using the matrix exponential the solution to (4.8) can be written as

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ. (4.9)

To prove this we differentiate both sides and use the property (4.7) of the
matrix exponential. This gives

dx

dt
= AeAtx(0) +

∫ t

0
AeA(t−τ)Bu(τ)dτ +Bu(t) = Ax+Bu,

which proves the result. Notice that the calculation is essentially the same
as for proving the result for a first order equation.

It follows from equations (4.8) and (4.9) that the input output relation
is given by

y(t) = CeAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ +Du(t) (4.10)

It is easy to see from this equation that the input/output systems is jointly
linear in both the initial conditions and the state: this follows from the
linearity of matrix/vector multiplication and integration.

Equation (4.10) is called the convolution equation and it represents the
general form of the solution of a system of coupled linear differential equa-
tions. We see immediately that the dynamics of the system, as characterized
by the matrix A, play a critical role in both the stability and performance
of the system. Indeed, the matrix exponential describes both what hap-
pens when we perturb the initial condition and how the system responds to
inputs.

Coordinate Changes

The components of the input vector u and the output vector y are unique
physical signals, but the state variables depend on the coordinate system
chosen to represent the state. The matrices A, B and C depend on the
coordinate system but not the matrix D, which directly relates inputs and
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outputs. The consequences of changing coordinate system will now be inves-
tigated. Introduce new coordinates z by the transformation z = Tx, where
T is a regular (invertible) matrix. It follows from (4.2) that

dz

dt
= T (Ax+Bu) = TAT−1z + TBu = Ãz + B̃u

y = Cx+DU = CT−1z +Du = C̃z +Du

The transformed system has the same form as (4.2) but the matrices A, B
and C are different

Ã = TAT−1, B̃ = TB, C̃ = CT−1, D̃ = D (4.11)

It is interesting to investigate if there are special coordinate systems that
gives systems of special structure.

We can also compare the solution of the system in transformed coordi-
nates to that in the original state coordinates. We make use of an important
property of the exponential map:

eTST−1

= TeST−1,

which can be verified by substitution in the definition of the exponential
map. Using this property, it is easy to show that

x(t) = T−1z(t) = T−1eÃtTx(0) + T−1

∫ t

0
eÃ(t−τ)B̃u(τ) dτ.

From this form of the equation, we see that if it is possible to transform
A into a form Ã for which the matrix exponential is easy to compute, we
can use that computation to solve the general convolution equation for the
untransformed state x by simple matrix multiplications. This technique is
illustrated in the next section.

4.3 Stability and Performance

The special form of a linear system, and its solution through the convolution
integral, allow us to analytically solve for the stability and input/output
performance properties that were given in Chapter ??.



98 CHAPTER 4. INPUT/OUTPUT BEHAVIOR

Diagonalizable Systems

The easiest class of linear systems to analyze are those whose system matri-
ces are in diagonal form. In this case, the dynamics have the form

dx

dt
=











λ1 0
λ2

. . .

0 λn











x+











β1

β2
...
βn











u

y =
[

γ1 γ2 . . . γn

]

x+Du.

It is easy to see that the state trajectories for this system are independent
of each other, so that we can write the solution in terms of n individual
systems

ẋi = λixi + βiu.

In particular, if we consider the stability of the system when u = 0, we see
that the equilibrium point xe = 0 is stable if lambdai ≤ 0 and asymptotically
stable if λi < 0.

Very few systems are diagonal, but some systems can be transformed into
diagonal form via coordinate transformations. One such class of systems is
those for which the systems matrix has distinct (non-repeating) eigenvalues.
In this case it is possible to find a matrix T such that the matrix TAT−1

and the transformed system is in diagonal form. In fact, it turns out that
the diagonal elements are precisely the eigenvalues of the original matrix A.
We can reason about the stability of the original system by nothing that
x(t) = T−1z(t) and so if the transformed system is stable (or asymptotically
stable) then the original system has the same type stability.

This analysis can be extended to systems with complex eigenvalues, as
we illustrate in the example below.

Example 4.4. Couple spring mass Consider the coupled mass spring system
show in Figure 4.2. The input to this system is the sinusoidal motion of the
end of rightmost spring and the output is the position of each mass, q1 and
q2. The equations of motion for the system are given by

m1q̈1 = −2kq1 − bq̇1 + kq2

m2q̈2 = kq1 − 2kq2 − bq̇2 + ku

In state-space form, we define the state to be x = (q1, q2, q̇1, q̇2) and we can
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b

u(t) = sinωt
m m

k
k

b
q1 q2

k

Figure 4.2: Coupled spring mass system.

rewrite the equations as

ẋ =









0 0 1 0
0 0 0 1

−2k
m

k
m − b

m 0
k
m −2k

m 0 − b
m









x+









0
0
0
k
m









u.

This is a coupled set of four differential equations and quite difficult to solve
in analytical form.

We now define a transformation z = Tx that puts this system into a
simpler form. Let z1 = 1

2(q1 + q2), z2 = ż1, z3 = 1
2(q1 − q2) and z4 = ż3, so

that

z = Tx =
1

2









1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1









x.

Using the coordinate transformations described above (or simple substitu-
tion of variables, which is equivalent), we can write the system in the z
coordinates as

ż =









0 1 0 0

− k
m − b

m 0 0
0 0 0 1

0 0 −3k
m − b

m









x+









0
k

2m
0

− k
2m









u.

Note that the resulting matrix equations are not diagonal but they are block
diagonal. Hence we can solve for the solutions by solving the two sets of
second order system represented by the states (z1, z2) and (z3, z4).

Once we have solved the two sets of independent second order equations
(described in more detail in the next section), we can recover the dynamics
in the original coordinates by inverting the state transformation and writing
x = T−1z. We can also determine the stability of the system by looking at
the stability of the independent second order systems.
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Jordan Form
Ä

Some matrices with equal eigenvalues cannot be transformed to diagonal
form. They can however be transformed to the Jordan form. In this form
the dynamics matrix has the eigenvalues along the diagonal. When there
are equal eigenvalues there may be ones appearing in the super diagonal
indicating that there are coupling between the states.

More specifically, we define a matrix to be in Jordan form if it can be
written as

J =











J1 0 . . . 0
0 J2 0

0 . . .
. . . 0

0 . . . Jk











where Ji =















λi 1 0 . . . 0
0 λi 1 0
...

. . .
. . .

...
0 . . . 0 λi 1
0 . . . 0 0 λi















. (4.12)

Each matrix Ji is called a Jordan block and λi for that block corresponds
an eigenvalue of J . Every matrix A ∈ Rn× n can be transformed into
Jordan form with the eigenvalues of A determining λi in the Jordan form.
Hence we can study the stability of a system by studying the stability of its
corresponding Jordan form. We summarize the main results in the following
theorem.

Theorem 4.3. The system
ẋ = Ax

is asymptotically stable if and only if all eigenvalues of A all have strictly
negative real part and is unstable if any eigenvalue of A has strictly positive
real part.

The case when one or more eigenvalues has zero real part is more compli-
cated and depends on the Jordan form associated with the dynamics matrix.

Impulse, Step and Frequency Response

The step response of (4.10) is obtained as the output when the initial con-
dition is zero and the output is a unit step. We get

h(t) = C

∫ t

0
eAτBdτ +D. (4.13)

The impulse response is the derivative of the step response.

g(t) = CeAtB +Dδ(t). (4.14)
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It is also the output when the initial condition is zero and the input is a
delta function. Note that both the step response and the impulse response
are invariant to changes in the coordinate system (substitute Ã, B̃, C̃ and
D̃ to verify this).

To compute the frequency response we make use of complex variables
and exploit the form of the complex exponential:

eα+iβ = eα(cosβ + i sinβ).

This useful formula allows us to compute the frequency response by letting
the input be u(t) = eiωtu0 = (cosωt + i sinωt)u0. The steady state out-
put and state are then y(t) = eiωty0 and x(t) = eiωtx0. Inserting these
expressions in the differential equation (4.2) we get

iωeiωtx0 = Aeiωtx0 +Beiωtu0

eiωty0 = Ceiωtx0 +Deiωtu0.

Solving the first equation for x0 and inserting in the second equation gives

y0 =
(

C
(

iωI −A
)−1

B +D
)

u0.

The frequency response is thus

G(iω) = C
(

iωI −A
)−1

B +D. (4.15)

The frequency response is invariant to changes in the coordinate system.

4.4 Second Order Systems

One class of systems that occurs frequently in the analysis and design of
feedback systems are second order, linear differential equations. Because of
their ubiquitous nature, it is useful to apply the concepts of this chapter to
that specific class of systems and build more intuition about the relationship
between stability and performance. We will first consider a second order
system with dynamics

q̈ + 2ζω0q̇ + ω2
0q = ω2

0u

y = q
(4.16)

The step responses of systems with different values of ζ are shown in Fig-
ure 4.3. The figure shows that parameter ω0 essentially gives a time scaling.
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Figure 4.3: Normalized step responses h for the system (4.16) for ζ = 0
(dotted), 0.1, 0.2, 0.5, 0.707 (dash dotted), 1, 2, 5 and 10 (dashed).

The response is faster if ω0 is larger. The shape of the response is determined
by ζ. The step responses have an overshoot of

M =

{

e−πζ/
√

1−ζ2

for |ζ| < 1

1 forζ ≥ 1.
(4.17)

For ζ < 1 the maximum overshoot occurs at

tmax =
π

ω0

√

1 − ζ2
(4.18)

There is always an overshoot if ζ < 1. The maximum decreases and is
shifted to the right when ζ increases and it becomes infinite for ζ = 1, when
the overshoot disappears. In most cases it is desirable to have a moderate
overshoot which means that the parameter ζ should be in the range of 0.5
to 1. The value ζ = 1 gives no overshoot.

It can be shown that the frequency response for this system is given by

G(iω) =
ω2

0

(iω)2 + 2ζω0(iω) + ω2
0

=
ω2

0

ω2
0 − ω2 + 2iζω0ω

.

A graphical illustration of the frequency response is given in Figure 4.4.
Notice the resonance peak that increases with decreasing ζ. The peak is
often characterized by is Q-value where Q = G(iω0) = 0.5/ζ.

4.5 Linearization

Another source of linear system models is through the approximation of
a nonlinear system by a linear one. These approximations are aimed at
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Figure 4.4: Frequency response of a the second order system (4.16). The
upper curve shows the gain ratio and the lower curve shows the phase shift.
The parameters is Bode plot of the system with ζ = 0 (dashed), 0.1, 0.2,
0.5, 0.7 and 1.0 (dashed-dot).

studying the local behavior of a system, where the nonlinear effects are
expected to be small. In this section we discuss how to locally approximate
a system by its linearization and what can be said about the approximation
in terms of stability.

Jacobian Linearizations of Nonlinear Systems

Consider a nonlinear system

ẋ = f(x, u) x ∈ R
n, u ∈ R

y = h(x, u) y ∈ R
(4.19)

with an equilibrium point at x = xe, u = ue. Without loss of generality,
we assume that xe = 0 and ue = 0, although initially we will consider the
general case to make the shift of coordinates explicit.

In order to study the local behavior of the system around the equilib-
rium point (xe, ue), we suppose that x − xe and u − ue are both small, so
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that nonlinear perturbations around this equilibrium point can be ignored
compared with the (lower order) linear terms. This is roughly the same type
of argument that is used when we do small angle approximations, replacing
sin θ with θ and cos θ with 1.

In order to formalize this idea, we define a new set of state variables z,
inputs v, and outputs w:

z = x− xe v = u− ue w = y − h(xe, ue).

These variables are all close to zero when we are near the equilibrium point,
and so in these variables the nonlinear terms can be thought of as the higher
order terms in a Taylor series expansion of the relevant vector fields (assum-
ing for now that these exist).

Example 4.5. Consider a simple scalar system,

ẋ = 1 − x3 + u.

The point (xe, ue) = (1, 0) is an equilibrium point for this system and we
can thus set

z = x− 1 v = u.

We can now compute the equations in these new coordinates as

ż =
d

dt
(x− 1) = ẋ

= 1 − x3 + u = 1 − (z + 1)3 + v

= 1 − z3 − 3z2 − 3z − 1 + v = −3z − 3z2 − z3 + v.

If we now assume that x stays very close to the equilibrium point, then
z = x− xe is small and z ¿ z2 ¿ z3. We can thus approximate our system
by a new system

ż = −3z + v.

This set of equations should give behavior that is close to that of the original
system as long as z remains small.

More formally, we define the Jacobian linearization of the nonlinear sys-
tem (4.19) as

ż = Az +Bv

w = Cz +Dv,
(4.20)
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where

A =
∂f(x, u)

∂x

∣

∣

∣

∣

(xe,ue)

B =
∂f(x, u)

∂u

∣

∣

∣

∣

(xe,ue)

C =
∂h(x, u)

∂x

∣

∣

∣

∣

(xe,ue)

D =
∂h(x, u)

∂u

∣

∣

∣

∣

(xe,ue)

(4.21)

The system (4.20) approximates the original system (4.19) when we are near
the equilibrium point that the system was linearized about.

It is important to note that we can only define the linearization of a sys-
tem about an equilibrium point. To see this, consider a polynomial system

ẋ = a0 + a1x+ a2x
2 + a3x

3 + u,

where a1 6= 0. There are a family of equilibrium points for this system given
by (xe, ue) = (−(a0 + u0)/a1, u0) and we can linearize around any of these.
Suppose instead that we try to linearize around the origin of the system,
x = 0, u = 0. If we drop the higher order terms in x, then we get

ẋ = a0 + a1x+ u,

which is not the Jacobian linearization if a0 6= 0. The constant term must
be kept and this is not present in (4.20). Furthermore, even if we kept the
constant term in the approximate model, the system would quickly move
away from this point (since it is “driven” by the constant term a0) and
hence the approximation could soon fail to hold.

Local Stability of Nonlinear Systems
Ä

Having constructed an approximate model around an equilibrium point, we
can now ask to what extent this model predicts the behavior of the original
nonlinear system. The following theorem gives a partial answer for the case
of stability.

Theorem 4.4. Consider the system (4.19) and let A ∈ R
n×n be defined

as in equation (4.21). If the real part of the eigenvalues of A are strictly
less than zero, then xe is a locally asymptotically stable equilibrium point
of (4.19).

This theorem proves that global uniform asymptotic stability of the lin-
earization implies local uniform asymptotic stability of the original nonlinear
system. The estimates provided by the proof of the theorem can be used to
give a (conservative) bound on the domain of attraction of the origin. Sys-
tematic techniques for estimating the bounds on the regions of attraction
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of equilibrium points of nonlinear systems is an important area of research
and involves searching for the “best” Lyapunov functions.
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4.6 Exercises
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