The purpose of this survey is to get a sense of the background and level of the students in the class. Please mark your answers in the space provided.

Please turn in this survey by Friday, 1 October, at 5 pm in the box outside of 109 Steele. You may also turn it in after lecture on Wednesday or Friday.

1. Which course are you taking (CDS 101, CDS 110a, undecided): ________________

2. What is your current option (ME, ChE, CS, Bio, etc)? _____ Year (Jr, Sr, G1, G2, etc)? ______

3. Are you obtaining a minor in CDS (yes, no, maybe)? ______

4. How did you hear about this course? Put a check mark next to all that apply. If you heard about this course in more than one way, please circle the method that was most effective in your choice to attend the first lecture.

 ___ Caltech catalog
 ___ Option requirements
 ___ Option rep
 ___ Other students
 ___ Other faculty
 ___ CDS web page
 ___ E-mail list
 ___ Other: ____________

5. Put a check mark next to any of the following courses that you have already taken. Put a ‘C’ if you are currently enrolled in the course:

 ___ ACM 95/100 (complex variables, ODEs)
 ___ AM 125 (linear algebra, ODEs)
 ___ AM 35 (statics and mechanics)
 ___ ME 18/ChE 63 (engineering thermo)
 ___ ChE 101 (kinetics, reactor design)
 ___ ChE/BE 210 (cellular engineering)
 ___ EE 20 (circuit theory)
 ___ EE 111 (signals and systems)
 ___ EE 113 (feedback circuits)
 ___ CS/EE 145ab (computer networking)
 ___ CDS 101 (feedback principles)
 ___ CDS 140 (dynamical systems)

6. Please rank your understanding of the following topics on a scale of 1 to 5, using the following classification:

 1 2 3 4 5
 never heard remember main very familiar of topic ideas/concepts with topic

 Note: it is completely OK if you have not heard of many of these topics. The purpose of the survey is to understand that background of the class. We will cover all of the topics in the left two columns in CDS 101 and all of them in CDS 110ab.

 ___ matrices and vectors
 ___ transfer function
 ___ Laplace transform
 ___ eigenvalues and eigenvectors
 ___ asymptotic stability
 ___ sensitivity function
 ___ ordinary differential equations
 ___ gain/phase margin
 ___ linear quadratic regulator
 ___ frequency response
 ___ PID control
 ___ Kalman filter

7. Are there any specific applications of feedback and control concepts that you are interested in?