
CDS 101, Lecture 9.2

26 November 2003

R. M. Murray, Caltech

1

CDS 101: Lecture 9.2
PID and Root Locus

Richard M. Murray
26 November 2003

Goals:
Define PID controllers and describe how to use them
Describe root locus diagram and show how to use it to choose loop gain

Reading: 
Astrom, Sec 6.1-6.4, 6.6
Optional: PPH, Sec 13
Advanced: Lewis, Chapter 12 + Sec 13.1
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Overview: PID control

Intuition
Proportional term: provides inputs that correct for “current” errors
Integral term: insures steady state error goes to zero
Derivative term: provides “anticipation” of  upcoming changes

A bit of history on “three term control”
First appeared in 1922 paper by Minorsky: “Directional stability of 
automatically steered bodies” under the name “three term control”
Also realized that “small deviations” (linearization) could be used to 
understand the (nonlinear) system dynamics under control

Utility of PID
PID control is most common feedback structure in engineering systems
For many systems, only need PI or PD (special case)
Many tools for tuning PID loops and designing gains (see reading)
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Frequency domain compensation with PID

Transfer function for PID controller

Roughly equivalent to a PI 
controller with lead compensation
Idea: gives high gain at low 
frequency plus phase lead at high 
frequency
Place below desired crossover freq
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Tools for Designing PID controllers

Zeigler-Nichols tuning
Design PID gains based on step response
Works OK for many plants (but underdamped)
Good way to get a first cut controller
Frequency domain version also exists

Caution: PID amplifies high frequency noise
Sol’n: pole at high frequency

Caution: Integrator windup
Prolonged error causes large integrated error
Effect: large undershoot (to reset integrator)
Sol’n: move pole at zero to very small value
Fancier sol’n: anti-windup compensation
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PID vs lead/lag compensation

PID Control

Pros: easy to design, implement
Cons: low freq lag, high freq gain

Lead/Lag Compensation

Pros: low freq phase, high freq rolloff
Cons: more complicated (slightly)
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Example: PID cruise control

Ziegler-Nichols design for cruise controller
Plot step response, extract L and a, compute 
gains

Result: sluggish ⇒ increase loop gain 
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Pole Zero Diagrams and Root Locus Plots

Pole zero diagram verifies 
stability

Roots of 1 + PC give closed 
loop poles
Can trace the poles as a 
parameter is changed:

Root locus = locus of roots as parameter value is changed
Can plot pole location versus any parameter; just repeatedly solve for roots
Common choice in control is to vary the loop gain (K)
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One Parameter Root Locus
Basic idea: convert to “standard problem”:

Look at location of roots as α is varied over positive real numbers
If “phase” of a(s)/b(s) = 180°, we can always choose a real α to solve eqn
Can compute the phase from the pole/zero diagram

Trace out positions in plane where 
phase = 180°

At each of these points, there exists 
gain α to satisfy a(s) + αb(s) = 0
All such points are on root locus
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Root Locus for Loop Gain

Loop gain as root locus parameter
Common choice for control design
Special properties for loop gain

Roots go from poles of PC to 
zeros of PC
Excess poles go to infinity
Can compute asymptotes, 
break points, etc

Very useful tool for control design
MATLAB: rlocus

Additional comments
Although loop gain is the most common 
parameter, don’t forget that you can plot 
roots versus any parameter
Need to link root location to performance…
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Second Order System Response

Second order system response
Spring mass dynamics, written in 
canonical form

Performance specifications

Guidelines for pole placement
Damping ratio gives Re/Im ratio
Setting time determined by –Re(λ)
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Effect of pole location on performance

Idea: look at “dominant poles”
Poles nearest the imaginary 
axis (nearest to instability)
Analyze using analogy to 
second order system

PZmap complements informa-
tion on Bode/Nyquist plots

Similar to gain and phase 
calculations
Shows performance in terms of 
the closed loop poles
Particularly useful for choosing 
system gain
Also useful for deciding where 
to put controller poles and zeros 
(with practice [and SISOtool])
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Example: PID cruise control
Start with PID control design: Modify gain to improve performance

Use MATLAB sisotool
Adjust loop gain (K) to reduce 
overshoot and decrease settling time

ζ ≈ 1 ⇒ less than 5% overshoot
Re(p) < -0.5 ⇒ Ts less than 2 sec
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Example: Ducted fan lateral position control

Lateral control (x)
Right half plane zero 
makes design very 
tricky using y as output
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Summary: PID and Root Locus

PID control design
Very common (and classical) 
control technique
Good tools for choosing gains

Root locus
Show closed loop poles as function 
of a free parameter

Performance limits
RHP poles and zeros place limits 
on achievable performance
Waterbed effect 
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