CDS 101: Lecture 9.2
PID and Root Locus

Richard M. Murray
26 November 2003

Goals:
- Define PID controllers and describe how to use them
- Describe root locus diagram and show how to use it to choose loop gain

Reading:
- Astrom, Sec 6.1-6.4, 6.6
- Optional: PPH, Sec 13
- Advanced: Lewis, Chapter 12 + Sec 13.1

Overview: PID control

\[u = K_p e + K_i \int e + K_d \dot{e} \]

Intuition
- Proportional term: provides inputs that correct for "current" errors
- Integral term: insures steady state error goes to zero
- Derivative term: provides "anticipation" of upcoming changes

A bit of history on "three term control"
- First appeared in 1922 paper by Minorsky: "Directional stability of automatically steered bodies" under the name "three term control"
- Also realized that "small deviations" (linearization) could be used to understand the (nonlinear) system dynamics under control

Utility of PID
- PID control is most common feedback structure in engineering systems
- For many systems, only need PI or PD (special case)
- Many tools for tuning PID loops and designing gains (see reading)
Frequency domain compensation with PID

Transfer function for PID controller

\[u = K_p e + K_i \int e + K_d \dot{e} \]

\[H_{w}(s) = K_p + K_i \frac{1}{s} + K_d s \]

- Roughly equivalent to a PI controller with lead compensation
- Idea: gives high gain at low frequency plus phase lead at high frequency
- Place below desired crossover freq

Tools for Designing PID controllers

Zeigler-Nichols tuning

- Design PID gains based on step response
- Works OK for many plants (but underdamped)
- Good way to get a first cut controller
- Frequency domain version also exists

Caution: PID amplifies high frequency noise

- Sol’n: pole at high frequency

Caution: Integrator windup

- Prolonged error causes large integrated error
- Effect: large undershoot (to reset integrator)
- Sol’n: move pole at zero to very small value
- Fancier sol’n: anti-windup compensation
PID vs lead/lag compensation

PID Control
\[C(s) = K_p + K_i \frac{1}{s} + K_ds \]

Lead/Lag Compensation
\[C(s) = K \frac{s + a_{\text{lag}}}{s + b_{\text{lag}}} \frac{s + a_{\text{lead}}}{s + b_{\text{lead}}} \]

- **Pros:**
 - PID: easy to design, implement
 - Lead/Lag: low freq phase, high freq rolloff

- **Cons:**
 - PID: low freq lag, high freq gain
 - Lead/Lag: more complicated (slightly)

Example: PID cruise control

Ziegler-Nichols design for cruise controller
- Plot step response, extract \(L \) and \(a \), compute gains

\[P(s) = \frac{1/m}{s + b/m} \cdot \frac{r}{s + a} \]

- \(L = 2.49 \)
- \(a = 0.039 \)

\[C(s) = (1 + \frac{1}{T_L s} + T_D s) \]

- \(K = 1.2/a \)
- \(T_I = 2* L \)
- \(T_D = L/2 \)

- Result: sluggish \(\Rightarrow \) increase loop gain
Pole Zero Diagrams and Root Locus Plots

Pole zero diagram verifies stability
- Roots of $1 + PC$ give closed loop poles
- Can trace the poles as a parameter is changed:
 $$C(s) = K \left(1 + \frac{1}{T_s} + T_p s\right)$$

Root locus = locus of roots as parameter value is changed
- Can plot pole location versus any parameter; just repeatedly solve for roots
- Common choice in control is to vary the loop gain (K)

One Parameter Root Locus

Basic idea: convert to “standard problem”: $a(s) + ab(s) = 0$
- Look at location of roots as a is varied over positive real numbers
- If “phase” of $a(s)/b(s) = 180^\circ$, we can always choose a real a to solve eqn
- Can compute the phase from the pole/zero diagram

$$G(s) = \frac{a(s)}{b(s)} = k \frac{(s + z_1)(s + z_2)\cdots(s + z_m)}{(s + p_1)(s + p_2)\cdots(s + p_n)}$$

$$\angle G(s_0) = \angle(s_0 + z_1) + \cdots + \angle(s_0 + z_m) - \angle(s_0 + p_1) - \cdots - \angle(s_0 + p_n)$$

Trace out positions in plane where phase = 180°
- At each of these points, there exists gain α to satisfy $a(s) + ab(s) = 0$
- All such points are on root locus
Root Locus for Loop Gain

Loop gain as root locus parameter
- Common choice for control design
- Special properties for loop gain
 - Roots go from poles of PC to zeros of PC
 - Excess poles go to infinity
 - Can compute asymptotes, break points, etc
- Very useful tool for control design
- MATLAB: rlocus

Additional comments
- Although loop gain is the most common parameter, don’t forget that you can plot roots versus any parameter
- Need to link root location to performance…

Second Order System Response

Second order system response
- Spring mass dynamics, written in canonical form

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s + \zeta\omega_n + j\omega_n)(s + \zeta\omega_n - j\omega_n)}$$

- Performance specifications

<table>
<thead>
<tr>
<th>ζ</th>
<th>M_p</th>
<th>T_s</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.707</td>
<td>4%</td>
<td>1.8</td>
<td>-1</td>
</tr>
<tr>
<td>0.5</td>
<td>16%</td>
<td>3.9</td>
<td>-1.7</td>
</tr>
<tr>
<td>0.25</td>
<td>44%</td>
<td>4</td>
<td>-3.9</td>
</tr>
</tbody>
</table>

Guidelines for pole placement
- Damping ratio gives Re/Im ratio
- Setting time determined by $-\text{Re}(\lambda)$

Desired region for closed loop poles
Effect of pole location on performance

Idea: look at “dominant poles”
- Poles nearest the imaginary axis (nearest to instability)
- Analyze using analogy to second order system

PZmap complements information on Bode/Nyquist plots
- Similar to gain and phase calculations
- Shows performance in terms of the closed loop poles
- Particularly useful for choosing system gain
- Also useful for deciding where to put controller poles and zeros (with practice [and SISOtool])

Example: PID cruise control

Start with PID control design:
\[P(s) = \frac{1/m}{s + b/m} \cdot \frac{r}{s + a} \]
\[C(s) = K(1 + \frac{1}{T_1 s} + T_2 s) \]

Modify gain to improve performance
- Use MATLAB sisotool
- Adjust loop gain (K) to reduce overshoot and decrease settling time
 - \(\zeta = 1 \Rightarrow \) less than 5% overshoot
 - \(\text{Re}(p) < -0.5 \Rightarrow T_s \) less than 2 sec
Example: Ducted fan lateral position control

\[P(s) = \frac{(s^2 - mg\ell)}{s^2 (Js^2 + ds + mg\ell)} \]

Lateral control \((x)\)
- Right half plane zero makes design very tricky using \(y\) as output

\[u = K_p e + K_i \int e + K_d \dot{e} \]

Summary: PID and Root Locus

PID control design
- Very common (and classical) control technique
- Good tools for choosing gains

Root locus
- Show closed loop poles as function of a free parameter

Performance limits
- RHP poles and zeros place limits on achievable performance
- Waterbed effect