

# CDS 101: Lecture 9.2 PID and Root Locus



# Richard M. Murray 26 November 2003

#### Goals:

- Define PID controllers and describe how to use them
- Describe root locus diagram and show how to use it to choose loop gain

#### Reading:

- Astrom, Sec 6.1-6.4, 6.6
- Optional: PPH, Sec 13
- Advanced: Lewis, Chapter 12 + Sec 13.1

## **Overview: PID control**



$$u = K_p e + K_I \int e + K_D \dot{e}$$

#### Intuition

- Proportional term: provides inputs that correct for "current" errors
- Integral term: insures steady state error goes to zero
- Derivative term: provides "anticipation" of upcoming changes

## A bit of history on "three term control"

- First appeared in 1922 paper by Minorsky: "Directional stability of automatically steered bodies" under the name "three term control"
- Also realized that "small deviations" (linearization) could be used to understand the (nonlinear) system dynamics under control

## **Utility of PID**

- PID control is most common feedback structure in engineering systems
- For many systems, only need PI or PD (special case)
- Many tools for tuning PID loops and designing gains (see reading)

26 Nov 03

R. M. Murray, Caltech CDS

2

26 November 2003

1

# Frequency domain compensation with PID



$$C(s) = K_{p} + K_{I} \cdot \frac{1}{s} + K_{D}s$$

$$= k(1 + \frac{1}{T_{I}s} + T_{D}s)$$

$$= \frac{kT_{D}}{T_{I}} \frac{(s + 1/T_{I})(s + 1/T_{D})}{s}$$

## Transfer function for PID controller

$$u = K_p e + K_I \int e + K_D \dot{e}$$

$$\downarrow$$

$$H_{ue}(s) = K_p + K_I \cdot \frac{1}{s} + K_D s$$

- · Roughly equivalent to a PI controller with lead compensation
- Idea: gives high gain at low frequency plus phase lead at high frequency
- · Place below desired crossover freq

26 Nov 03

R. M. Murray, Caltech CDS

Phase (deg); Magnitude (dB) Frequency (rad/sec)

3

# **Tools for Designing PID controllers**



$$C(s) = K(1 + \frac{1}{T_I s} + T_D s)$$

Step response

#### **Zeigler-Nichols tuning**

- Design PID gains based on step response
- Works OK for many plants (but underdamped)
- · Good way to get a first cut controller
- Frequency domain version also exists

#### Caution: PID amplifies high frequency noise

Sol'n: pole at high frequency

## **Caution: Integrator windup**

- Prolonged error causes large integrated error  $\stackrel{\widehat{\underline{\mathfrak{g}}}}{\underline{\overline{\mathfrak{g}}}}$
- Effect: large undershoot (to reset integrator)
- Sol'n: move pole at zero to very small value
- Fancier sol'n: anti-windup compensation

 $T_I = 2 * L$   $T_D = L/2$ K = 1.2/aFrequency (rad/sec) 4

Point of maximum

26 Nov 03

R. M. Murray, Caltech CDS

26 November 2003

2





26 November 2003

# **Pole Zero Diagrams and Root Locus Plots**



# Pole zero diagram verifies stability

- Roots of 1 + *PC* give closed loop poles
- Can *trace* the poles as a parameter is changed:

$$C(s) = K(1 + \frac{1}{T_D} + T_D s)$$



## Root locus = locus of roots as parameter value is changed

- Can plot pole location versus any parameter; just repeatedly solve for roots
- Common choice in control is to vary the loop gain (K)

26 Nov 03

R. M. Murray, Caltech CDS

7

#### **One Parameter Root Locus**

Basic idea: convert to "standard problem":  $a(s) + \alpha b(s) = 0$ 

- Look at location of roots as  $\alpha$  is varied over *positive real* numbers
- If "phase" of  $a(s)/b(s) = 180^\circ$ , we can always choose a real  $\alpha$  to solve eqn
- Can compute the phase from the pole/zero diagram



 $\phi_i$  = phase contribution from  $s_0$  to  $-p_i$  $\psi_i$  = phase contribution from  $s_0$  to  $-z_i$ 

$$G(s) = \frac{a(s)}{b(s)} = k \frac{(s+z_1)(s+z_2)\cdots(s+z_m)}{(s+p_1)(s+p_2)\cdots(s+p_n)}$$

$$\angle G(s_0) = \angle (s_0 + z_1) + \dots + \angle (s_0 + z_m) -$$
  
$$\angle (s_0 + p_1) - \dots - \angle (s_0 + p_n)$$

Trace out positions in plane where phase = 180°

- At each of these points, there exists gain  $\alpha$  to satisfy  $a(s) + \alpha b(s) = 0$
- All such points are on root locus

26 Nov 03

R. M. Murray, Caltech CDS

8

26 November 2003

4

# Root Locus for Loop Gain



$$1 + \alpha \frac{n(s)}{d(s)} \to d(s) + \alpha n(s) = 0$$

#### Loop gain as root locus parameter

- Common choice for control design
- Special properties for loop gain
  - Roots go from poles of PC to zeros of PC
  - Excess poles go to infinity
  - Can compute asymptotes, break points, etc
- · Very useful tool for control design
- MATLAB: rlocus



#### **Additional comments**

- Although loop gain is the most common parameter, don't forget that you can plot roots versus any parameter
- Need to link root location to performance...

26 Nov 03

R. M. Murray, Caltech CDS

С

# **Second Order System Response**

## Second order system response

• Spring mass dynamics, written in canonical form

## **Guidelines for pole placement**

- Damping ratio gives Re/Im ratio
- Setting time determined by  $-Re(\lambda)$

$$H(s) = \frac{\omega_n^2}{s^2 + 2\varsigma \omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s + \varsigma \omega_n + j\omega_d)(s + \varsigma \omega_n - j\omega_d)} \qquad \omega_d = \omega_n \sqrt{1 - (s + \varepsilon \omega_n + j\omega_d)(s + \varepsilon \omega_n - j\omega_d)}$$

• Performance specifications

$$T_r \approx 1.8/\omega_n$$
  $M_p \approx e^{-\pi \varsigma/\sqrt{1-\varsigma^2}}$   
 $T_s \approx 3.9/\varsigma \omega_n$   $e_{\rm SS} = 0$ 

| ζ     | $M_p$ | Slope |
|-------|-------|-------|
| 0.707 | 4%    | -1    |
| 0.5   | 16%   | -1.7  |
| 0.25  | 44%   | -3.9  |



26 Nov 03

R. M. Murray, Caltech CDS

Real Axis

10

26 November 2003

# Effect of pole location on performance Idea: look at "dominant poles" • Poles nearest the imaginary axis (nearest to instability) · Analyze using analogy to second order system PZmap complements information on Bode/Nyquist plots · Similar to gain and phase calculations · Shows performance in terms of the closed loop poles · Particularly useful for choosing system gain • Also useful for deciding where to put controller poles and zeros (with practice [and SISOtool]) 26 Nov 03 R. M. Murray, Caltech CDS 11



26 November 2003





26 November 2003 7