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CDS 101: Lecture 9.1
Limits of Performance

Richard M. Murray
24 November 2003

Goals:
Describe limits of performance on feedback systems
Introduce Bode’s integral formula and the “waterbed” effect
Show some of the limitations of feedback due to RHP poles and zeros

Reading: 
Åström and Murray, Analysis and Design of Feedback Systems, Ch 9
Advanced: Lewis, Chapter 9
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Lecture 8.1: Frequency Domain Design

Loop Shaping for Stability & Performance
Steady state error, bandwidth, tracking

Main ideas
Performance specifications 
give bounds on loop transfer 
function
Use controller to shape 
response
Gain/phase relationships 
constrain design approach
Standard compensators: 
proportional, lead, PI-100
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“Gang of Four”

Four unique transfer functions define performance
Stability is always determined by 1/(1+PC)
Numerator determined by forward path between input and output

Noise and disturbances
d = process disturbances
n = sensor noise
Keep track of transfer 
functions between all possible 
inputs and outputs

Design represents a tradeoff 
between the quantities

Keep L=PC large for good 
performance (Her << 1)
Keep L=PC small for good 
noise rejection (Hyn << 1)
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Algebraic Constraints on Performance

Goal: keep S & T small
S small ⇒ low tracking error
T small ⇒ good noise rejection (and 
robustness [CDS 110b])

Problem: S + T = 1
Can’t make both S & T small at the 
same frequency
Solution: keep S small at low frequency 
and T small at high frequency
Loop again interpretation: keep L large 
at low frequency, and small at high 
frequency

Transition between large gain and 
small gain complicated by stability 
(phase margin)
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Bode’s Integral Formula and the Waterbed Effect

Bode’s integral formula for S = 1/(1+PC) = 1/(1+L):
Let pk be the unstable poles of L(s) and assume relative degree of L(s) ≥ 2
Theorem: the area under the sensitivity function is a conserved quantity:

Waterbed effect:
Making sensitivity smaller over some 
frequency range requires increase in 
sensitivity someplace else
Presence of RHP poles makes this 
effect worse
Actuator bandwidth further limits 
what you can do
Note: area formula is linear in ω; 
Bode plots are logarithmic
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area above 0 dB = 
π ∑ Re pk = constant
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Example: Magnetic Levitation

System description
Ball levitated by electromagnet
Inputs: current thru electromagnet
Outputs: position of ball (from IR sensor)
States: 
Dynamics: F = ma, F = magnetic force 
generated by wire coil
See MATLAB handout for details

Controller circuit
Active R/C filter network
Inputs: set point, disturbance, 
ball position
States: currents and voltages
Outputs: electromagnet current

IR
receivier

IR
transmitter

Electro-
magnet

Ball
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Equations of Motion

Process: actuation, sensing, dynamics

u = current to electromagnet
vir = voltage from IR sensor

Linearization:

Poles at s = ± r ⇒ open loop unstable

IR
receivier

IR
transmitter

Electro-
magnet

Ball
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Control Design

Need to create encirclement
Loop shaping is not useful here
Flip gain to bring Nyquist plot over 
-1 point
Insert phase to create CCW 
encirclement

Can accomplish using a lead 
compensator

Produce phase lead at crossover
Generates loop in Nyquist plot
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Performance Limits

Nominal design gives low perf
Not enough gain at low frequency
Try to adjust overall gain to 
improve low frequency response
Works well at moderate gain, but 
notice waterbed effect

Bode integral limits improvement

Must increase sensitivity at some 
point
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Right Half Plane Zeros

Right half plane zeros produce “non-minimum phase” behavior
Phase of frequency response has additional phase lag for given magnitude
Can cause output to move opposite from input for a short period of time

Example:                                           vs
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Example: Lateral Control of the Ducted Fan

Source of non-minimum phase 
behavior

To move left, need to make θ > 0
To generate positive θ, need f1 > 0
Positive f1 causes fan to move right 
initially
Fan starts to move left after short 
time (as fan rotates)

θ
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Stability in the Presence of Zeros

Loop gain limitations
Poles of closed loop = poles of 1 + L.  Suppose C = k nc/dc, where k
is the gain of the controller

For large k, closed loop poles approach open loop zeros
RHP zeros limit maximum gain ⇒ serious design constraint!

Root locus interpretation
Plot location of eigenvalues as a
function of the loop gain k
Can show that closed loop poles go
from open loop poles (k = 0) to open
loop zeros (k = \infty)
More details in CDS 110 on Wed
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Additional performance limits due to RHP zeros

Another waterbed-like effect: look at maximum of Her over frequency range:

Thm: Suppose that P has a RHP zero at z.  Then there exist constants c1 and 
c2 (depending on ω1, ω2, z) such that                                      .

M1 typically << 1 ⇒ M2 must be larger than 1 (since sum is positive)
If we increase performance in active range (make M1 and Her smaller), we 
must lose performance (Her increases) some place else
Note that this affects peaks not integrals (different from RHP poles)
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Summary: Limits of Performance

Many limits to performance
Algebraic: S + T = 1
RHP poles: Bode integral formula
RHP zeros: Waterbed effect on peak of S

Main message: try to avoid 
RHP poles and zeros when-
ever possible (eg, re-design)
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